基于递归神经网络的监督强化学习在动态治疗推荐中的应用Supervised Reinforcement Learning with Recurrent Neural Network for Dynamic Treatment Recommendation |
|
课程网址: | http://http://videolectures.net/kdd2018_wang_dynamic_treatment_re... |
主讲教师: | Lu Wang |
开课单位: | 华东师范大学 |
开课时间: | 2018-11-23 |
课程语种: | 英语 |
中文简介: | 基于大规模电子健康记录(EHR)的动态治疗推荐系统成为成功提高实际临床结果的关键。先前的相关研究建议治疗要么使用监督学习(例如,匹配指示医生处方的指标信号),要么使用强化学习(例如最大化指示存活率累积回报的评估信号)。然而,这些研究都没有考虑将监督学习和强化学习的好处结合起来。在本文中,我们提出了带有递归神经网络的监督强化学习(SRL-RNN),将它们融合到协同学习框架中。具体而言,SRL-RNN应用非政策行动者-批评者框架来处理多种药物、疾病和个体特征之间的复杂关系。框架中的“行动者”通过指标信号和评估信号进行调整,以确保有效的处方和低死亡率。RNN被进一步用于解决部分观测马尔可夫决策过程(POMDP)由于在现实世界应用中缺乏完全观察到的状态而导致的问题。在公开的真实世界数据集(即MIMIC-3)上进行的实验表明,我们的模型可以降低估计的死亡率,同时在匹配医生的处方时提供有希望的准确性。 |
课程简介: | Dynamic treatment recommendation systems based on large-scale electronic health records (EHRs) become a key to successfully improve practical clinical outcomes. Prior relevant studies recommend treatments either use supervised learning (e.g. matching the indicator signal which denotes doctor prescriptions), or reinforcement learning (e.g. maximizing evaluation signal which indicates cumulative reward from survival rates). However, none of these studies have considered to combine the benefits of supervised learning and reinforcement learning. In this paper, we propose Supervised Reinforcement Learning with Recurrent Neural Network (SRL-RNN), which fuses them into a synergistic learning framework. Specifically, SRL-RNN applies an off-policy actor-critic framework to handle complex relations among multiple medications, diseases and individual characteristics. The “actor’’ in the framework is adjusted by both the indicator signal and evaluation signal to ensure effective prescription and low mortality. RNN is further utilized to solve the Partially-Observed Markov Decision Process (POMDP) problem due to lack of fully observed states in real world applications. Experiments on the publicly real-world dataset, i.e., MIMIC-3, illustrate that our model can reduce the estimated mortality, while providing promising accuracy in matching doctors’ prescriptions. |
关 键 词: | 基于递归神经网络; 大规模电子健康记录; 监督强化学习; 在动态治疗推荐中的应用; SRL-RNN应用非政策行动 |
课程来源: | 视频讲座网 |
数据采集: | 2023-03-27:cyh |
最后编审: | 2023-03-27:cyh |
阅读次数: | 32 |