麻烦还是合理的威胁?(社会)科学家对机器学习的批评Bugbears or Legitimate Threats? (Social) Scientists' Criticisms of Machine Learning |
|
课程网址: | http://videolectures.net/kdd2014_mullainathan_machine_learning/ |
主讲教师: | Sendhil Mullainathan |
开课单位: | 哈佛大学 |
开课时间: | 2014-10-07 |
课程语种: | 英语 |
中文简介: | 社会科学家越来越多地批评使用机器学习技术来理解人类行为。批评包括:(1)它们是理论性的,因此科学价值有限;(2)它们不涉及因果关系,因此政策价值有限;(3)它们是不可解释的,因此具有有限的泛化价值(在上下文之外,非常类似于训练数据集)。我认为,这些批评错过了ML技术提供的从根本上改善实证社会科学实践的巨大机会。然而,每一种批评都包含了一点真理,克服它们需要对现有的方法进行创新。其中一些创新目前正在开发,而另一些还有待解决。我将在这次演讲中概述(1)这些创新是什么样的;(二)为什么需要它们;(3)他们提出的技术挑战。我将通过一系列应用来阐述我的观点,这些应用从金融市场到社会政策问题,再到基本心理过程的计算模型。本次演讲将介绍与Jon Kleinberg的合作以及与Himabindu Lakkaraju、Jure Leskovec、Jens Ludwig、Anuj Shah、Chenhao Tan、Mike Yeomans和Tom Zimmerman的个人项目。 |
课程简介: | Social scientists increasingly criticize the use of machine learning techniques to understand human behavior. Criticisms include: (1) They are atheoretical and hence of limited scientific value; (2) They do not address causality and are hence of limited policy value; and (3) They are uninterpretable and hence of limited generalizability value (outside contexts very narrowly similar to the training dataset). These criticisms, I argue, miss the enormous opportunity offered by ML techniques to fundamentally improve the practice of empirical social science. Yet each criticism does contain a grain of truth and overcoming them will require innovations to existing methodologies. Some of these innovations are being developed today and some are yet to be tackled. I will in this talk sketch (1) what these innovations look like or should look like; (2) why they are needed; and (3) the technical challenges they raise. I will illustrate my points using a set of applications that range from financial markets to social policy problems to computational models of basic psychological processes. This talk describes joint work with Jon Kleinberg and individual projects with Himabindu Lakkaraju, Jure Leskovec, Jens Ludwig, Anuj Shah, Chenhao Tan, Mike Yeomans and Tom Zimmerman. |
关 键 词: | 机器学习; 科学价值; 因果关系; 人类行为 |
课程来源: | 视频讲座网 |
数据采集: | 2023-04-03:chenxin01 |
最后编审: | 2023-05-22:chenxin01 |
阅读次数: | 24 |