基于情境预测的无监督视觉表征学习Unsupervised Visual Representation Learning by Context Prediction |
|
课程网址: | http://videolectures.net/iccv2015_doersch_visual_representation/ |
主讲教师: | Carl Doersch |
开课单位: | 卡内基梅隆大学 |
开课时间: | 2016-02-10 |
课程语种: | 英语 |
中文简介: | 这项工作探索了使用空间语境作为免费和丰富的监督信号的来源,以训练丰富的视觉表征。给定一个大的、未标记的图像集合,我们从每张图像中提取随机的补丁对,并训练卷积神经网络来预测第二个补丁相对于第一个补丁的位置。我们认为,做好这项任务需要模型学会识别物体及其部件。我们证明了使用图像内上下文学习的特征表示确实捕获了图像之间的视觉相似性。例如,这种表示法允许我们对Pascal VOC 2011检测数据集中的猫、人甚至鸟类等物体进行无监督的视觉发现。此外,我们表明,学习后的ConvNet可以用于R-CNN框架[19],并比随机初始化的ConvNet提供了显著的提升,从而在仅使用pascal提供的训练集注释的算法中获得了最先进的性能。 |
课程简介: | This work explores the use of spatial context as a source of free and plentiful supervisory signal for training a rich visual representation. Given only a large, unlabeled image collection, we extract random pairs of patches from each image and train a convolutional neural net to predict the position of the second patch relative to the first. We argue that doing well on this task requires the model to learn to recognize objects and their parts. We demonstrate that the feature representation learned using this within-image context indeed captures visual similarity across images. For example, this representation allows us to perform unsupervised visual discovery of objects like cats, people, and even birds from the Pascal VOC 2011 detection dataset. Furthermore, we show that the learned ConvNet can be used in the R-CNN framework [19] and provides a significant boost over a randomly-initialized ConvNet, resulting in state-of-the-art performance among algorithms which use only Pascal-provided training set annotations. |
关 键 词: | 情境预测; 监督信号; 神经网络 |
课程来源: | 视频讲座网 |
数据采集: | 2023-04-16:chenxin01 |
最后编审: | 2023-05-21:chenxin01 |
阅读次数: | 29 |