0


为大量用户群集单个事务数据

Clustering Individual Transactional Data for Masses of Users
课程网址: http://videolectures.net/kdd2017_guidotti_transactional_data/  
主讲教师: Riccardo Guidotti
开课单位: 国家研究委员会
开课时间: 2017-10-09
课程语种: 英语
中文简介:
挖掘大量记录人类活动的数据集以理解个人数据是新一波个性化基于知识的服务的关键推动者。在本文中,我们关注的是针对大量用户的单个事务数据的聚类问题。事务数据是一种非常普遍的信息,由多个服务收集,通常涉及大量用户。我们提出了一种无参数聚类算法txmeans,它能够以完全自动的方式高效地划分事务性数据。Txmeans是为必须在大量不同数据集上应用聚类的情况而设计的,例如,当需要单独分析大量用户,并且每个用户都生成了很长的事务历史时。在真实数据集和合成数据集上的深入实验表明,txmeans对不同个人数据集大规模聚类的实际有效性,并表明txmeans在质量和效率方面优于现有方法。最后,我们提出了一个基于txmeans的个人购物车助手应用程序。
课程简介: Mining a large number of datasets recording human activities for making sense of individual data is the key enabler of a new wave of personalized knowledge-based services. In this paper we focus on the problem of clustering individual transactional data for a large mass of users. Transactional data is a very pervasive kind of information that is collected by several services, often involving huge pools of users. We propose txmeans, a parameter-free clustering algorithm able to efficiently partitioning transactional data in a completely automatic way. Txmeans is designed for the case where clustering must be applied on a massive number of different datasets, for instance when a large set of users need to be analyzed individually and each of them has generated a long history of transactions. A deep experimentation on both real and synthetic datasets shows the practical effectiveness of txmeans for the mass clustering of different personal datasets, and suggests that txmeans outperforms existing methods in terms of quality and efficiency. Finally, we present a personal cart assistant application based on txmeans.
关 键 词: 记录数据; 知识服务; 事务数据
课程来源: 视频讲座网
数据采集: 2023-04-16:chenxin01
最后编审: 2023-05-21:chenxin01
阅读次数: 25