排名和校准点击属性购买在性能显示广告Ranking and Calibrating Click-Attributed Purchases in Performance Display Advertising |
|
课程网址: | http://videolectures.net/kdd2017_bagherjeiran_performance_display... |
主讲教师: | Abraham Bagherjeiran |
开课单位: | A9.com股份有限公司 |
开课时间: | 2017-12-01 |
课程语种: | 英语 |
中文简介: | 在绩效展示广告中,竞标者代表广告主竞争广告印象,即在发布者网站上展示相关广告的机会。我们考虑代表购买广告印象的在线零售商竞标,希望仅从点击购买中实现价值。竞标者有两个阶段的问题。在第一阶段,竞标者必须从大量的广告选择中选择一小部分,这些被选择的广告最有可能导致购买。在第二阶段,竞标者必须估计所选广告的购买概率,然后可以使用它来创建出价。第一阶段的挑战是,由于点击归因约束,针对购买进行优化的模型也需要(接近)针对点击进行优化。第二阶段的挑战是购买的真实概率非常小,很难准确建模。我们提出了一个排序模型,然后是一个校准方法,以顺序解决两个阶段的问题。我们描述了顺序排名如何自然地适合广告选择问题,以及如何通过优化购买来学习单一模型,同时(接近)优化点击。然后,我们提出了一种校准方法,该方法包括一种用于经验概率估计的新型非均匀分形技术,并结合校准函数,如等压和多项式回归以及Platt标度。我们提供了来自一个主要广告网络的日志事件的实证结果,证明了序数模型比二元分类器在广告排名方面的优越性,以及我们提出的校准技术比传统的基于均匀分类的校准技术的优越性。 |
课程简介: | In performance display advertising, bidders compete on behalf of advertisers for ad impressions, that is, the opportunity to display relevant ads on a publisher website. We consider bidding on behalf of online retailers who buy ad impressions hoping to realize value only from purchases attributed from clicks. The bidder has a two stage problem. In the first stage, the bidder has to select a small subset from a large selection of ads, with the selected ads most likely to lead to purchases. In the second stage, the bidder has to estimate the purchase probability of the selected ads, which can then be used to create bid values. The challenge in the first stage is that a model optimized for purchases also needs to be (near) optimal for clicks, due to the click attribution constraint. The challenge in the second stage is that true probability of purchases is extremely small, and is difficult to accurately model. We propose a ranking model, followed by a calibration method, to sequentially address the two stage problem. We describe how ordinal ranking is a natural fit for the ad selection problem and how to learn a single model by optimizing for purchases, while being (near) optimal for clicks. We then propose a calibration method, which comprises of a novel non-uniform binning technique for empirical probability estimation, in conjunction with calibration functions such as isotonic and polynomial regression and Platt scaling. We provide empirical results on logged events from a major ad network, that demonstrate the superiority of ordinal model over binary classifiers for ranking ads and the superiority of our proposed calibration technique over traditional uniform binning based calibration technique. |
关 键 词: | 广告竞争; 绩效展示; 在线竞标 |
课程来源: | 视频讲座网 |
数据采集: | 2023-04-20:chenxin01 |
最后编审: | 2023-05-18:chenxin01 |
阅读次数: | 30 |