0


深度和跨网络广告点击预测

Deep & Cross Network for Ad Click Predictions
课程网址: http://videolectures.net/kdd2017_wang_click_predictions/  
主讲教师: Ruoxi Wang
开课单位: 斯坦福大学计算与数学工程研究所
开课时间: 2017-12-01
课程语种: 英语
中文简介:
特征工程是许多预测模型成功的关键。然而,这个过程并不简单,通常需要手工特征工程或穷举搜索。dnn能够自动学习特征交互;然而,它们隐式地生成所有交互,并且在学习所有类型的交叉特征时不一定有效。在本文中,我们提出了深度交叉网络(深度和交叉网络, DCN),它保留了DNN模型的优点,并在此基础上引入了一种新的交叉网络,该网络在学习某些有界度特征交互方面更有效。特别是,DCN明确地在每一层应用特征交叉,不需要手动特征工程,并且为DNN模型增加了微不足道的额外复杂性。我们的实验结果表明,在CTR预测数据集和密集分类数据集上,该算法在模型精度和内存使用方面都优于目前最先进的算法。
课程简介: Feature engineering has been the key to the success of many prediction models. However, the process is nontrivial and often requires manual feature engineering or exhaustive searching. DNNs are able to automatically learn feature interactions; however, they generate all the interactions implicitly, and are not necessarily efficient in learning all types of cross features. In this paper, we propose the Deep & Cross Network (DCN) which keeps the benefits of a DNN model, and beyond that, it introduces a novel cross network that is more efficient in learning certain bounded-degree feature interactions. In particular, DCN explicitly applies feature crossing at each layer, requires no manual feature engineering, and adds negligible extra complexity to the DNN model. Our experimental results have demonstrated its superiority over the state-of-art algorithms on the CTR prediction dataset and dense classification dataset, in terms of both model accuracy and memory usage.
关 键 词: 交叉网络; 模型预测; 特征工程
课程来源: 视频讲座网
数据采集: 2023-04-20:chenxin01
最后编审: 2023-05-18:chenxin01
阅读次数: 34