0


图元与机器学习:稀疏海量网络的建模与估计

Graphons and Machine Learning: Modeling and Estimation of Sparse Massive Networks
课程网址: http://videolectures.net/kdd2016_chayes_machine_learning/  
主讲教师: Jennifer Chayes
开课单位: 微软研究院
开课时间: 2016-08-31
课程语种: 英语
中文简介:
有许多稀疏的大规模网络的例子,特别是互联网、WWW和在线社交网络。我们如何对这些网络进行建模和学习?与我们有许多独立样本的传统学习问题相反,对于这些网络,我们通常只能得到一个独立样本。我们如何使用今天的单个快照来学习网络模型,从而能够预测未来类似但更大的网络?在相对较小或中等规模的网络的情况下,对网络进行参数化建模并尝试学习这些参数是合适的。对于大规模网络,非参数表示更为合适。在这次演讲中,我们首先回顾了近十年来发展起来的描述密集图极限的图子理论,以及最近描述无界平均度稀疏图的理论,包括幂律图。然后我们展示了如何使用这些图作为稀疏网络的非参数模型。最后,我们展示了如何获得这些非参数模型的一致估计量,以及如何以保护网络上个人隐私的方式做到这一点。
课程简介: There are numerous examples of sparse massive networks, in particular the Internet, WWW and online social networks. How do we model and learn these networks? In contrast to conventional learning problems, where we have many independent samples, it is often the case for these networks that we can get only one independent sample. How do we use a single snapshot today to learn a model for the network, and therefore be able to predict a similar, but larger network in the future? In the case of relatively small or moderately sized networks, it’s appropriate to model the network parametrically, and attempt to learn these parameters. For massive networks, a non-parametric representation is more appropriate. In this talk, we first review the theory of graphons, developed over the last decade to describe limits of dense graphs, and the more the recent theory describing sparse graphs of unbounded average degree, including power-law graphs. We then show how to use these graphons as non-parametric models for sparse networks. Finally, we show how to get consistent estimators of these non-parametric models, and moreover how to do this in a way that protects the privacy of individuals on the network.
关 键 词: 在线社交; 网络建模; 独立样本
课程来源: 视频讲座网
数据采集: 2023-04-20:chenxin01
最后编审: 2023-05-18:chenxin01
阅读次数: 27