Struc2vec:从结构同一性学习节点表示Struc2vec: Learning Node Representations from Structural Identity |
|
课程网址: | http://videolectures.net/kdd2017_figueiredo_struc2vec/ |
主讲教师: | Daniel Ratton Figueiredo |
开课单位: | 里约热内卢联邦大学 |
开课时间: | 2017-10-09 |
课程语种: | 英语 |
中文简介: | 结构同一性是一种对称概念,网络节点根据网络结构及其与其他节点的关系来识别。在过去的几十年里,结构同一性已经在理论和实践中得到了研究,但直到最近才用表征学习技术来解决这个问题。这项工作提出了struc2vec,一个新颖而灵活的框架,用于学习节点结构同一性的潜在表示。Struc2vec使用层次结构度量节点在不同尺度上的相似度,并构建多层图来编码节点的结构相似度,生成节点的结构上下文。数值实验表明,最先进的学习节点表示技术无法捕获更强的结构同一性概念,而struc2vec在此任务中表现出更优越的性能,因为它克服了先前方法的局限性。因此,数值实验表明,struc2vec在更依赖于结构同一性的分类任务上提高了性能。 |
课程简介: | Structural identity is a concept of symmetry in which network nodes are identified according to the network structure and their relationship to other nodes. Structural identity has been studied in theory and practice over the past decades, but only recently has it been addressed with representational learning techniques. This work presents struc2vec, a novel and flexible framework for learning latent representations for the structural identity of nodes. struc2vec uses a hierarchy to measure node similarity at different scales, and constructs a multilayer graph to encode structural similarities and generate structural context for nodes. Numerical experiments indicate that state-of-the-art techniques for learning node representations fail in capturing stronger notions of structural identity, while struc2vec exhibits much superior performance in this task, as it overcomes limitations of prior approaches. As a consequence, numerical experiments indicate that struc2vec improves performance on classification tasks that depend more on structural identity. |
关 键 词: | 结构同一; 学习节点; 网络结构 |
课程来源: | 视频讲座网 |
数据采集: | 2023-04-22:chenxin01 |
最后编审: | 2023-05-18:chenxin01 |
阅读次数: | 16 |