0


结构深层脑网络挖掘

Structural Deep Brain Network Mining
课程网址: http://videolectures.net/kdd2017_wang_deep_brain/  
主讲教师: Shen Wang
开课单位: 伊利诺伊大学芝加哥分校计算机科学系
开课时间: 2017-10-09
课程语种: 英语
中文简介:
神经成像数据挖掘在医疗保健和生物信息学领域越来越受欢迎,因为它有可能发现有临床意义的结构模式,有助于理解和诊断神经和神经精神疾病。最近的研究集中在应用子图挖掘技术来发现大脑网络中的连通子图模式。然而,潜在的大脑网络结构是复杂的。作为一种浅层线性模型,子图挖掘无法捕捉高度非线性的结构,从而导致次优模式。因此,如何学习能够捕捉大脑网络高度非线性并保留底层结构的表征是一个关键问题。 在本文中,我们提出了一种结构深度脑网络挖掘方法,即SDBN,以学习大脑网络的高度非线性和结构保持表示。具体来说,我们首先引入了一种基于模块识别的新的图重排序方法,该方法重新排列节点的顺序以保持图的模块结构。接下来,我们进行结构增强,以进一步增强重新排序的图的空间信息。然后,我们提出了一个深度特征学习框架,通过增强卷积神经网络(CNN)和解码路径进行重建,在小规模环境中将监督学习和无监督学习相结合。在多层非线性映射的帮助下,所提出的SDBN方法可以捕捉大脑网络的高度非线性结构。此外,它对高维脑网络具有更好的泛化能力,即使在小样本学习中也能很好地工作。得益于CNN以任务为导向的学习风格,学习的分层表示对临床任务有意义。为了评估所提出的SDBN方法,我们在四个用于疾病诊断的真实大脑网络数据集上进行了广泛的实验。实验结果表明,SDBN可以捕获有判别力和有意义的结构图表示,用于大脑疾病的诊断。
课程简介:  Mining from neuroimaging data is becoming increasingly popular in the field of healthcare and bioinformatics,  due to its potential to discover clinically meaningful structure patterns that could facilitate the understanding and diagnosis of neurological and neuropsychiatric disorders. Most recent research concentrates on applying subgraph mining techniques to discover connected subgraph patterns in the brain network. However, the underlying brain network structure is complicated. As a shallow linear model, subgraph mining cannot capture the highly non-linear structures, resulting in sub-optimal patterns. Therefore, how to learn representations that can capture the highly non-linearity of brain networks and preserve the underlying structures is a critical problem. In this paper, we propose a Structural Deep Brain Network mining method, namely SDBN, to learn highly non-linear and structure-preserving representations of brain networks. Specifically, we first introduce a novel graph reordering approach based on module identification, which rearranges the order of the nodes to preserve the modular structure of the graph. Next, we perform structural augmentation to further enhance the spatial information of the reordered graph. Then we propose a deep feature learning framework for combining supervised learning and unsupervised learning in a small-scale setting, by augmenting Convolutional Neural Network (CNN) with decoding pathways for reconstruction. With the help of the multiple layers of non-linear mapping, the proposed SDBN approach can capture the highly non-linear structure of brain networks. Further, it has better generalization capability for high-dimensional brain networks and works well even for small sample learning. Benefit from CNN's task-oriented learning style, the learned hierarchical representation is meaningful for the clinical task. To evaluate the proposed SDBN method, we conduct extensive experiments on four real brain network datasets for disease diagnoses. The experiment results show that SDBN can capture discriminative and meaningful structural graph representations for brain disorder diagnosis.
关 键 词: 神经成像数据; 大脑网络; 神经网络
课程来源: 视频讲座网
数据采集: 2023-04-22:chenxin01
最后编审: 2023-05-17:chenxin01
阅读次数: 30