基于层次和或模型的汽车检测上下文与遮挡的集成Integrating Context and Occlusion for Car Detection by Hierarchical And-Or Model |
|
课程网址: | http://videolectures.net/eccv2014_li_car_detection/ |
主讲教师: | Bo Li |
开课单位: | 加州大学洛杉矶分校 |
开课时间: | 2014-10-29 |
课程语种: | 英语 |
中文简介: | 本文提出了一种学习可重构层次和或模型的方法,将上下文和遮挡整合到汽车检测中。and - or(和或)模型在三个层次上表示车对车的上下文和遮挡模式的规律性:(i)空间耦合的N辆车的布局,(ii)不同视点遮挡配置的单辆车,以及(iii)少量零件。学习过程包括两个阶段。我们首先用三个组件学习and - or模型的结构:(a)基于带注释的单车边界盒的布局挖掘n辆车的上下文模式,(b)基于单车之间的重叠统计挖掘遮挡配置,(c)基于汽车3D CAD仿真或启发式挖掘潜在汽车部件学习可见部件。将and - or模型组织成一个有向无环图,从而引出推理中的动态规划算法。在第二阶段,我们使用弱标签结构支持向量机共同训练模型参数(用于外观,变形和偏差)。在实验中,我们在四个汽车数据集上测试了我们的模型:KITTI数据集[11],街道停车数据集[19],PASCAL VOC2007汽车数据集[7]和一个自收集的停车场数据集。我们比较了最先进的可变形零件模型和其他方法的变体。我们的模型在四个数据集上得到了一致的显著改进。 |
课程简介: | This paper presents a method of learning reconfigurable hierarchical And-Or models to integrate context and occlusion for car detection. The And-Or model represents the regularities of car-to-car context and occlusion patterns at three levels: (i) layouts of spatially-coupled N cars, (ii) single cars with different viewpoint-occlusion configurations, and (iii) a small number of parts. The learning process consists of two stages. We first learn the structure of the And-Or model with three components: (a) mining N-car contextual patterns based on layouts of annotated single car bounding boxes, (b) mining the occlusion configurations based on the overlapping statistics between single cars, and (c) learning visible parts based on car 3D CAD simulation or heuristically mining latent car parts. The And-Or model is organized into a directed and acyclic graph which leads to the Dynamic Programming algorithm in inference. In the second stage, we jointly train the model parameters (for appearance, deformation and bias) using Weak-Label Structural SVM. In experiments, we test our model on four car datasets: the KITTI dataset [11], the street parking dataset [19], the PASCAL VOC2007 car dataset [7], and a self-collected parking lot dataset. We compare with state-of-the-art variants of deformable part-based models and other methods. Our model obtains significant improvement consistently on the four datasets. |
关 键 词: | 汽车检测; 遮挡模式; 空间耦合 |
课程来源: | 视频讲座网 |
数据采集: | 2023-04-24:chenxin01 |
最后编审: | 2023-05-22:chenxin01 |
阅读次数: | 28 |