0


整体嵌套边缘检测

Holistically-Nested Edge Detection
课程网址: http://videolectures.net/iccv2015_xie_edge_detection/  
主讲教师: Saining Xie
开课单位: 加州大学圣地亚哥分校计算机科学与工程系
开课时间: 2016-02-10
课程语种: 英语
中文简介:
我们开发了一种新的边缘检测算法,解决了这个长期存在的视觉问题中的两个重要问题:(1)整体图像训练和预测;(2)多尺度、多层次特征学习。我们提出的方法,整体嵌套边缘检测(HED),通过利用全卷积神经网络和深度监督网络的深度学习模型执行图像到图像的预测。HED自动学习丰富的层次表示(在侧面响应的深度监督指导下),这对于解决边缘和物体边界检测中具有挑战性的模糊性非常重要。我们在BSD500数据集(ODS F得分为.782)和NYU Depth数据集(ODS F得分为.746)上显著推进了最先进的技术,并且提高了速度(每张图像0.4s),比最近一些基于cnn的边缘检测算法快了几个数量级。
课程简介: We develop a new edge detection algorithm that addresses two important issues in this long-standing vision problem: (1) holistic image training and prediction; and (2) multi-scale and multi-level feature learning. Our proposed method, holistically-nested edge detection (HED), performs image-to-image prediction by means of a deep learning model that leverages fully convolutional neural networks and deeply-supervised nets. HED automatically learns rich hierarchical representations (guided by deep supervision on side responses) that are important in order to resolve the challenging ambiguity in edge and object boundary detection. We significantly advance the state-of-the-art on the BSD500 dataset (ODS F-score of.782) and the NYU Depth dataset (ODS F-score of.746), and do so with an improved speed (0.4s per image) that is orders of magnitude faster than some recent CNN-based edge detection algorithms.
关 键 词: 整体嵌套; 边缘检测; 视觉问题; 图像训练
课程来源: 视频讲座网
数据采集: 2023-04-24:chenxin01
最后编审: 2023-05-18:chenxin01
阅读次数: 60