指南针:美国大选的时空情绪分析Compass: Spatio Temporal Sentiment Analysis of US Election |
|
课程网址: | http://videolectures.net/kdd2017_paul_sentiment_analysis/ |
主讲教师: | Debjyoti Paul |
开课单位: | 犹他大学 |
开课时间: | 2017-10-09 |
课程语种: | 英语 |
中文简介: | 随着各种社交网络工具和平台的广泛发展,通过社交媒体数据分析和理解社会反应和人群对重要和新兴社会问题和事件的反应越来越成为一个重要问题。然而,由于社交媒体数据的非结构化和嘈杂性,在有效实现这一目标方面存在许多挑战。大量的基础数据也带来了根本性的挑战。此外,在许多应用程序场景中,基于地理和/或时间分区发现模式和趋势,并跟踪它们将如何随着时间的推移而变化,这通常是有趣的,在某些情况下也是至关重要的。这就提出了从大规模社交媒体数据中进行时空情感分析的有趣问题。本文通过一个名为“2016年美国大选,推特怎么说”的数据科学项目调查了这个问题。目的是利用2016年美国总统大选前6个月的大量带有地理标签的推文,在任意的时间间隔内,发现推特上对美国县和州一级民主党或共和党的情绪。我们的研究结果表明,通过集成和开发机器学习和数据管理技术的组合,有可能大规模实现这一目标并取得有效成果。我们项目的结果有可能被用于解决和影响其他有趣的社会问题,如建立社区幸福感和健康指标。 |
课程简介: | With the widespread growth of various social network tools and platforms, analyzing and understanding societal response and crowd reaction to important and emerging social issues and events through social media data is increasingly an important problem. However, there are numerous challenges towards realizing this goal effectively and efficiently, due to the unstructured and noisy nature of social media data. The large volume of the underlying data also presents a fundamental challenge. Furthermore, in many application scenarios, it is often interesting, and in some cases critical, to discover patterns and trends based on geographical and/or temporal partitions, and keep track of how they will change overtime. This brings up the interesting problem of spatio-temporal sentiment analysis from large-scale social media data. This paper investigates this problem through a data science project called ``US Election 2016, What Twitter Says’‘. The objective is to discover sentiment on twitter towards either the democratic or the republican party at US county and state levels over any arbitrary temporal intervals, using a large collection of geotagged tweets from a period of 6 months leading up to the US presidential election in 2016. Our results demonstrate that by integrating and developing a combination of machine learning and data management techniques, it is possible to do this at scale with effective outcomes. The results of our project have the potential to be adapted towards solving and influencing other interesting social issues such as building neighborhood happiness and health indicators. |
关 键 词: | 数据分析; 社交媒体; 时空情感 |
课程来源: | 视频讲座网 |
数据采集: | 2023-05-24:chenxin01 |
最后编审: | 2023-05-24:chenxin01 |
阅读次数: | 21 |