基于随机嵌入的十亿维贝叶斯优化Bayesian Optimization in a Billion Dimensions via Random Embeddings |
|
课程网址: | http://videolectures.net/lsoldm2013_de_freitas_random_embeddings/ |
主讲教师: | Nando de Freitas |
开课单位: | 牛津大学 |
开课时间: | 2013-11-07 |
课程语种: | 英语 |
中文简介: | 贝叶斯优化技术已成功应用于机器人、规划、传感器放置、推荐、广告、智能用户界面和自动算法配置。尽管取得了这些成功,但该方法仅限于中等维度的问题,几个关于贝叶斯优化的研讨会已经将其扩展到高维度确定为该领域的圣杯之一。在本文中,我们引入了一种新的随机嵌入思想来解决这个问题。由此产生的随机EMbeding贝叶斯优化(REMBO)算法非常简单,具有重要的不变性,适用于具有分类变量和连续变量的领域。我们对REMBO进行了深入的理论分析,包括仅取决于问题内在维度的后悔界。实证结果证实,只要本征维数较低,REMBO可以有效地解决数十亿维的问题。他们还表明,REMBO在优化流行的混合整数线性规划求解器的47个离散参数方面实现了最先进的性能。 |
课程简介: | Bayesian optimization techniques have been successfully applied to robotics, planning, sensor placement, recommendation, advertising, intelligent user interfaces and automatic algorithm configuration. Despite these successes, the approach is restricted to problems of moderate dimension, and several workshops on Bayesian optimization have identified its scaling to high-dimensions as one of the holy grails of the field. In this paper, we introduce a novel random embedding idea to attack this problem. The resulting Random EMbedding Bayesian Optimization (REMBO) algorithm is very simple, has important invariance properties, and applies to domains with both categorical and continuous variables. We present a thorough theoretical analysis of REMBO, including regret bounds that only depend on the problem's intrinsic dimensionality. Empirical results confirm that REMBO can effectively solve problems with billions of dimensions, provided the intrinsic dimensionality is low. They also show that REMBO achieves state-of-the-art performance in optimizing the 47 discrete parameters of a popular mixed integer linear programming solver. |
关 键 词: | 优化技术; 随机嵌入; 嵌入思想 |
课程来源: | 视频讲座网 |
数据采集: | 2023-05-29:chenxin01 |
最后编审: | 2023-05-29:chenxin01 |
阅读次数: | 46 |