聚类图随机化:多个普遍性下的网络暴露Clustered Graph Randomization: Network Exposure to Multiple Universes |
|
课程网址: | http://videolectures.net/kdd2013_ugander_multiple_universes/ |
主讲教师: | Johan Ugander |
开课单位: | 康奈尔大学 |
开课时间: | 2013-09-27 |
课程语种: | 英语 |
中文简介: | A/B测试是评估在线实验效果的标准方法;其目的是通过将整个人群的样本暴露在新特征或疾病中来估计其“平均治疗效果”。a/B测试的一个缺点是,当个体的治疗沿着潜在的社交网络扩散到相邻个体时,它不太适合涉及社会干扰的实验。在这项工作中,我们提出了一种新的方法,使用图聚类来分析社会干扰下的平均治疗效果。首先,我们描述了图论条件,在这些条件下,个体可以被认为是实验中的“网络暴露”。然后,我们展示了图簇随机化如何允许一种有效的精确算法来计算在其中几个暴露条件下每个顶点被网络暴露的概率。使用这些概率作为反权重,Horvitz-Thompson估计器可以提供无偏的效应估计,前提是已经适当地指定了暴露模型。 给定一个无偏的估计量,我们专注于最小化方差。首先,我们给出了估计量的方差在图的大小n中渐近小的简单充分条件。然而,对于一般的随机化方案,这种方差可以通过图的度的指数函数来下界。相反,我们证明了如果图满足邻域增长率的限制增长条件,那么存在一种基于顶点邻域的自然聚类算法,对于该算法,估计器的方差可以由度的线性函数上界。因此,我们表明,当实验测量干扰下的平均治疗效果时,适当的聚类随机化可以导致指数较低的估计方差。 |
课程简介: | A/B testing is a standard approach for evaluating the effect of online experiments; the goal is to estimate the `average treatment effect' of a new feature or condition by exposing a sample of the overall population to it. A drawback with A/B testing is that it is poorly suited for experiments involving social interference, when the treatment of individuals spills over to neighboring individuals along an underlying social network. In this work, we propose a novel methodology using graph clustering to analyze average treatment effects under social interference. To begin, we characterize graph-theoretic conditions under which individuals can be considered to be `network exposed' to an experiment. We then show how graph cluster randomization admits an efficient exact algorithm to compute the probabilities for each vertex being network exposed under several of these exposure conditions. Using these probabilities as inverse weights, a Horvitz-Thompson estimator can then provide an effect estimate that is unbiased, provided that the exposure model has been properly specified. Given an estimator that is unbiased, we focus on minimizing the variance. First, we develop simple sufficient conditions for the variance of the estimator to be asymptotically small in n, the size of the graph. However, for general randomization schemes, this variance can be lower bounded by an exponential function of the degrees of a graph. In contrast, we show that if a graph satisfies a restricted-growth condition on the growth rate of neighborhoods, then there exists a natural clustering algorithm, based on vertex neighborhoods, for which the variance of the estimator can be upper bounded by a linear function of the degrees. Thus we show that proper cluster randomization can lead to exponentially lower estimator variance when experimentally measuring average treatment effects under interference. |
关 键 词: | 网络暴露; 效果评估; 社交网络; 估计方差 |
课程来源: | 视频讲座网 |
数据采集: | 2023-06-10:chenxin01 |
最后编审: | 2023-06-10:chenxin01 |
阅读次数: | 30 |