多面体的分类器进行目标检测的一个案例研究Polyhedral Classifier for Target Detection A Case Study |
|
课程网址: | http://videolectures.net/icml08_raykar_pcf/ |
主讲教师: | Vikas Raykar |
开课单位: | 马里兰大学 |
开课时间: | 2008-08-05 |
课程语种: | 英语 |
中文简介: | 在本研究中, 我们引入了一种新的算法来学习多面体来描述目标类。该方法利用为负样本提供的有限子类信息, 共同优化多个超平面分类器, 每个分类器都旨在对负样本的一个子类中的正样本进行分类.多面体的平面提供了鲁棒性, 而多个面有助于灵活处理复杂的数据集。除了提高系统的预测精度外, 所提出的多面体分类器还提供了在级联框架中实时执行时作为副产品的运行时速度。我们介绍了结肠癌计算机辅助检测作为一个案例研究, 并评估了在实际结肠数据集上的预测准确性和在线执行速度方面的性能。我们还将所提出的技术与一些基准分类器进行了比较。 |
课程简介: | In this study we introduce a novel algorithm for learning a polyhedron to describe the target class. The proposed approach takes advantage of the limited subclass information made available for the negative samples and jointly optimizes multiple hyperplane classifiers each of which is designed to classify positive samples from a subclass of the negative samples. The flat faces of the polyhedron provides robustness whereas multiple faces contributes to the flexibility required to deal with complex datasets. Apart from improving the prediction accuracy of the system, the proposed polyhedral classifier also provides run-time speedups as a by-product when executed in a cascaded framework in real-time. We introduce the Computer Aided Detection for Colon Cancer as a case study and evaluate the performance of the proposed technique on a real-world Colon dataset both in terms of prediction accuracy and online execution speed. We also compare the proposed technique against some benchmark classifiers. |
关 键 词: | 多面体; 框架; 基准分类器 |
课程来源: | 视频讲座网 |
最后编审: | 2020-05-31:吴雨秋(课程编辑志愿者) |
阅读次数: | 70 |