0


大规模网络的学习表征

Learning Representations of Large-scale Networks
课程网址: http://videolectures.net/kdd2017_tutorial21_large_scale_networks/  
主讲教师: Qiaozhu Mei; Jian Tang
开课单位: 密歇根大学;蒙特利尔大学
开课时间: 2017-11-21
课程语种: 英语
中文简介:
社交网络、引用网络、万维网和流量网络等大规模网络在现实世界中无处不在。网络也可以由文本、时间序列、行为日志和许多其他类型的数据构建。网络数据挖掘在学术界和工业界引起了越来越多的关注,涵盖了各种应用,并影响了许多类型数据的挖掘方法。网络挖掘的前提是找到网络的有效表示,这在很大程度上决定了下游数据挖掘任务的性能。传统上,网络通常被表示为邻接矩阵,其具有数据稀疏性和高维性。最近,人们对学习网络的连续低维表示产生了快速增长的兴趣。由于多种原因,这是一个具有挑战性的问题:(1)网络数据(节点和边)是稀疏的、离散的和全局交互的;(2) 现实世界中的网络非常庞大,通常包含数百万个节点和数十亿条边;以及(3)真实世界的网络是异构的。边可以是有向的、无向的或加权的,并且节点和边可以携带不同的语义。 在本教程中,我们将介绍学习大规模网络的连续低维表示的最新进展。这包括学习节点嵌入的方法,学习较大图结构(例如,整个网络)的表示的方法,以及在极低(2D或3D)维空间上布局非常大的网络的方法。我们将介绍学习不同类型节点表示的方法:可以用作节点分类、社区检测、链接预测和网络可视化的特征的表示。我们将介绍端到端的方法,通过使用深度神经网络直接优化信息级联预测、化合物分类和蛋白质结构分类等任务,学习整个图结构的表示。我们将重点介绍这些技术的开源实现。 教程链接
课程简介: Large-scale networks such as social networks, citation networks, the World Wide Web, and traffic networks are ubiquitous in the real world. Networks can also be constructed from text, time series, behavior logs, and many other types of data. Mining network data attracts increasing attention in academia and industry, covers a variety of applications, and influences the methodology of mining many types of data. A prerequisite to network mining is to find an effective representation of networks, which largely determines the performance of downstream data mining tasks. Traditionally, networks are usually represented as adjacency matrices, which suffer from data sparsity and high-dimensionality. Recently, there is a fast-growing interest in learning continuous and low-dimensional representations of networks. This is a challenging problem for multiple reasons: (1) networks data (nodes and edges) are sparse, discrete, and globally interactive; (2) real-world networks are very large, usually containing millions of nodes and billions of edges; and (3) real-world networks are heterogeneous. Edges can be directed, undirected or weighted, and both nodes and edges may carry different semantics. In this tutorial, we will introduce the recent progress on learning continuous and low-dimensional representations of large-scale networks. This includes methods that learn the embeddings of nodes, methods that learn representations of larger graph structures (e.g., an entire network), and methods that layout very large networks on extremely low (2D or 3D) dimensional spaces. We will introduce methods for learning different types of node representations: representations that can be used as features for node classification, community detection, link prediction, and network visualization. We will introduce end-to-end methods that learn the representation of the entire graph structure through directly optimizing tasks such as information cascade prediction, chemical compound classification, and protein structure classification, using deep neural networks. We will highlight open source implementations of these techniques. Link to tutorial:
关 键 词: 规模网络; 学习表征; 社交网络
课程来源: 视频讲座网
数据采集: 2023-06-11:chenxin01
最后编审: 2023-06-11:chenxin01
阅读次数: 24