0


事件检测

Event Detection
课程网址: http://videolectures.net/kdd09_neill_wong_ed/  
主讲教师: Daniel B. Neill; Weng-Keen Wong
开课单位: 卡内基梅隆大学;俄勒冈州立大学
开课时间: 2009-09-14
课程语种: 英语
中文简介:
监测、科学发现和数据清理中的一项常见任务是监测常规收集的异常事件数据。使用公认的技术,如Box-Jenkins模型、回归和统计质量控制方法,可以有效地检测单变量时间序列数据中的事件。然而,近年来,常规收集的数据变得越来越复杂。在每个时间步长,收集的数据可以由多变量向量组成和/或本质上是空间的。例如,用于疾病监测的医疗保健数据通常由多变量患者记录或空间分布的药品销售数据组成。因此,已经开发了新的事件检测算法,该算法不仅考虑时间信息,还检测空间模式并整合来自多个时空数据流的信息。 本教程将介绍事件检测的算法,重点介绍处理多变量时间和时空数据的算法。我们将通过提供事件检测问题的一般公式并描述其独特的挑战来介绍事件检测。在本教程的前半部分,我们将介绍在单变量和多变量时间数据中检测事件的算法。下半部分将介绍在时空数据中检测事件的方法,包括最近提出的几种多元方法。
课程简介: A common task in surveillance, scientific discovery and data cleaning involves monitoring routinely collected data for anomalous events. Detecting events in univariate time series data can be effectively accomplished using well-established techniques such as Box-Jenkins models, regression, and statistical quality control methods. In recent years, however, routinely collected data has become increasingly complex. At each time step, the data collected can consist of multivariate vectors and/or be spatial in nature. For instance, healthcare data used in disease surveillance often consists of multivariate patient records or spatially distributed pharmaceutical sales data. Consequently, new event detection algorithms have been developed that not only consider temporal information but also detect spatial patterns and integrate information from multiple spatio-temporal data streams. This tutorial will present algorithms for event detection, with a focus on algorithms dealing with multivariate temporal and spatio-temporal data. We will introduce event detection by providing a general formulation of the event detection problem and describing its unique challenges. In the first half of the tutorial, we will cover algorithms for detecting events in both univariate and multivariate temporal data. The second half will present methods for detecting events in spatio-temporal data, including several recently proposed multivariate approaches.
关 键 词: 事件检测; 时间变量; 时空数据
课程来源: 视频讲座网
数据采集: 2023-06-12:chenxin01
最后编审: 2023-06-12:chenxin01
阅读次数: 33