隐私保护的强化学习Privacy-Preserving Reinforcement Learning |
|
课程网址: | http://videolectures.net/icml08_sakuma_ppr/ |
主讲教师: | Jun Sakuma |
开课单位: | 东京工业大学 |
开课时间: | 2008-08-04 |
课程语种: | 英语 |
中文简介: | 分布式强化学习(DRL)已被研究作为一种学习控制策略的方法,通过分布式代理和环境之间的交互。 DRL的主要重点是通过最少或有限的代理共享感知来学习次优政策。在本研究中,我们将一个新概念 - 隐私保护 - 引入DRL。在我们的环境中,代理人的感知,例如状态,奖励和行动,不仅是分发的,而且还希望保密。当代理人的感知包括私人或机密信息时,就会发生这种情况。传统的DRL算法可以应用于这些问题,但理论上不保证隐私保护。我们设计的解决方案可以在标准强化杠杆设置中实现最佳策略,而无需代理通过众所周知的加密原语,安全功能评估来共享其私人信息。 |
课程简介: | Distributed reinforcement learning (DRL) has been studied as an approach to learn control policies thorough interactions between distributed agents and environments. The main emphasis of DRL has been put on the way to learn sub-optimal policies with the least or limited sharing of agents' perceptions. In this study, we introduce a new concept, privacy-preservation, into DRL. In our setting, agents' perceptions, such as states, rewards, and actions, are not only distributed but also are desired to be kept private. This can occur when agents' perceptions include private or confidential information. Conventional DRL algorithms could be applied to such problems, but do not theoretically guarantee privacy preservation. We design solutions that achieve optimal policies in standard reinforcement leering settings without requiring the agents to share their private information by means of well-known cryptographic primitive, secure function evaluation. |
关 键 词: | 分布式强化学习; 隐私保护; 政策标准 |
课程来源: | 视频讲座网 |
最后编审: | 2020-09-27:yumf |
阅读次数: | 171 |