使用内部补丁递归的盲去模糊Blind Deblurring Using Internal Patch Recurrence |
|
课程网址: | http://videolectures.net/eccv2014_michaeli_blind_deblurring/ |
主讲教师: | Tomer Michaeli |
开课单位: | 魏茨曼科学研究所 |
开课时间: | 2014-10-29 |
课程语种: | 英语 |
中文简介: | 小图像块在自然图像的不同尺度上的递归先前已被用于解决不适定问题(例如,来自单个图像的超分辨率)。在本文中,我们展示了这种多尺度特性如何也可以用于“盲去模糊”,即从模糊图像中去除未知模糊。当斑块在清晰的自然图像中跨尺度“原样”重复时,这种跨尺度重复在模糊图像中显著减少。我们利用这些与理想补丁递归的偏差作为恢复潜在(未知)模糊内核的提示。更具体地说,我们寻找模糊内核k,这样,如果其效果被“撤消”(如果模糊图像与k去卷积),则图像的各个尺度上的补丁相似性将被最大化。我们报告了大量的实验评估,这表明我们的方法与最先进的盲去模糊方法相比是有利的,尤其是比它们更稳健。 |
课程简介: | Recurrence of small image patches across different scales of a natural image has been previously used for solving ill-posed problems (e.g. super- resolution from a single image). In this paper we show how this multi-scale property can also be used for “blind-deblurring”, namely, removal of an unknown blur from a blurry image. While patches repeat ‘as is’ across scales in a sharp natural image, this cross-scale recurrence significantly diminishes in blurry images. We exploit these deviations from ideal patch recurrence as a cue for recovering the underlying (unknown) blur kernel. More specifically, we look for the blur kernel k, such that if its effect is “undone” (if the blurry image is deconvolved with k), the patch similarity across scales of the image will be maximized. We report extensive experimental evaluations, which indicate that our approach compares favorably to state-of-the-art blind deblurring methods, and in particular, is more robust than them. |
关 键 词: | 补丁递归; 自然图像; 超分辨率 |
课程来源: | 视频讲座网 |
数据采集: | 2023-07-19:chenxin01 |
最后编审: | 2023-07-19:chenxin01 |
阅读次数: | 17 |