0


用于相关滤波器跟踪的目标响应自适应

Target Response Adaptation for Correlation Filter Tracking
课程网址: http://videolectures.net/eccv2016_bibi_target_response/  
主讲教师: Adel Bibi
开课单位: 阿卜杜拉国王科技大学
开课时间: 2016-10-24
课程语种: 英语
中文简介:
大多数基于相关滤波器(CF)的跟踪器利用训练数据的循环结构来学习线性滤波器,该线性滤波器将该数据最好地回归到手工制作的目标响应。这些循环移位的补丁只是图像中实际平移的近似值,在包括快速运动、遮挡等在内的许多真实跟踪场景中,这些平移变得不可靠。在这些情况下,传统上使用单中心高斯作为目标响应会阻碍跟踪器的性能,并可能导致不可恢复的漂移。为了避免这一主要缺点,我们提出了一种通用框架,该框架可以从一帧到另一帧自适应地改变目标响应,从而使跟踪器对循环移位不能可靠地近似平移的情况不太敏感。为了做到这一点,我们重新制定了基础优化,以联合求解滤波器和目标响应,其中后者通过使用实际翻译进行的测量来正则化。这个联合问题有一个封闭形式的解决方案,因此允许使用多个模板、内核和多维特征。在流行的OTB100基准上进行的大量实验表明,我们的目标自适应框架可以与许多CF跟踪器相结合,以实现显著的整体性能改进(精度从3%-13.5%到3.2%-13%不等),尤其是在需要这种自适应的类别中(如快速运动、运动模糊等)。
课程简介: Most correlation filter (CF) based trackers utilize the circulant structure of the training data to learn a linear filter that best regresses this data to a hand-crafted target response. These circularly shifted patches are only approximations to actual translations in the image, which become unreliable in many realistic tracking scenarios including fast motion, occlusion, etc. In these cases, the traditional use of a single centered Gaussian as the target response impedes tracker performance and can lead to unrecoverable drift. To circumvent this major drawback, we propose a generic framework that can adaptively change the target response from frame to frame, so that the tracker is less sensitive to the cases where circular shifts do not reliably approximate translations. To do that, we reformulate the underlying optimization to solve for both the filter and target response jointly, where the latter is regularized by measurements made using actual translations. This joint problem has a closed form solution and thus allows for multiple templates, kernels, and multi-dimensional features. Extensive experiments on the popular OTB100 benchmark show that our target adaptive framework can be combined with many CF trackers to realize significant overall performance improvement (ranging from 3 %–13.5 % in precision and 3.2 %–13 % in accuracy), especially in categories where this adaptation is necessary (e.g. fast motion, motion blur, etc.).
关 键 词: 数据循环; 线性滤波; 目标响应
课程来源: 视频讲座网
数据采集: 2023-07-19:chenxin01
最后编审: 2023-07-19:chenxin01
阅读次数: 22