学习深度结构化模型Learning Deep Structured Models |
|
课程网址: | http://videolectures.net/icml2015_chen_deep_structured_models/ |
主讲教师: | Liang-Chieh Chen |
开课单位: | 加州大学洛杉矶分校 |
开课时间: | 2015-09-27 |
课程语种: | 英语 |
中文简介: | 现实世界应用中的许多问题涉及预测几个统计相关的随机变量。马尔可夫随机场(MRF)是一个伟大的数学工具来编码这种依赖关系。本文的目标是将MRF与深度学习相结合,在考虑输出随机变量之间的依赖性的同时估计复杂表示。为了实现这一目标,我们提出了一种训练算法,该算法能够联合学习具有形成MRF潜能的深层特征的结构化模型。我们的方法是有效的,因为它融合了学习和推理,并利用了GPU加速。我们展示了我们的算法在从嘈杂的图像中预测单词以及标记Flickr照片的任务中的有效性。我们表明,深度特征和MRF参数的联合学习可以显著提高性能。 |
课程简介: | Many problems in real-world applications involve predicting several random variables that are statistically related. Markov random fields (MRFs) are a great mathematical tool to encode such dependencies. The goal of this paper is to combine MRFs with deep learning to estimate complex representations while taking into account the dependencies between the output random variables. Towards this goal, we propose a training algorithm that is able to learn structured models jointly with deep features that form the MRF potentials. Our approach is efficient as it blends learning and inference and makes use of GPU acceleration. We demonstrate the effectiveness of our algorithm in the tasks of predicting words from noisy images, as well as tagging of Flickr photographs. We show that joint learning of the deep features and the MRF parameters results in significant performance gains. |
关 键 词: | 随机变量; 深度学习; 依赖关系 |
课程来源: | 视频讲座网 |
数据采集: | 2023-07-19:chenxin01 |
最后编审: | 2023-07-19:chenxin01 |
阅读次数: | 29 |