0


规格化切割符合MRF

Normalized Cut meets MRF
课程网址: http://videolectures.net/eccv2016_tang_normalized_cut/  
主讲教师: Meng Tang
开课单位: 加拿大西安大略大学
开课时间: 2016-10-24
课程语种: 英语
中文简介:
我们提出了一种新的分割模型,该模型结合了常见的正则化能量,如马尔可夫随机场(MRF)势,以及标准的成对聚类标准,如归一化割(NC)、平均关联(AA)等。这些聚类和正则化模型被广泛用于机器学习和计算机视觉,但由于在相应的优化(例如谱弛豫和组合最大流量技术)方面的显著差异,它们以前没有组合。一方面,我们表明,许多使用MRF分割能量的常见应用可以受益于高阶NC项,例如,对结合颜色、纹理、位置、深度、运动等的任意高维图像特征进行平衡聚类。另一方面,标准聚类应用可以受益于共同成对或高阶MRF约束的包含,例如,边缘对齐、bin一致性、标签成本等。为了解决像NC+MRF这样的联合能量,我们提出了基于边界优化的高效内核切割算法。在专注于图切割和移动制作技术的同时,我们针对常见成对聚类标准的新一元(线性)核和谱界公式允许将它们与现有离散或连续求解器的任何正则化泛函集成。
课程简介: We propose a new segmentation model combining common regularization energies, e.g. Markov Random Field (MRF) potentials, and standard pairwise clustering criteria like Normalized Cut (NC), average association (AA), etc. These clustering and regularization models are widely used in machine learning and computer vision, but they were not combined before due to significant differences in the corresponding optimization, e.g. spectral relaxation and combinatorial max-flow techniques. On the one hand, we show that many common applications using MRF segmentation energies can benefit from a high-order NC term, e.g. enforcing balanced clustering of arbitrary high-dimensional image features combining color, texture, location, depth, motion, etc. On the other hand, standard clustering applications can benefit from an inclusion of common pairwise or higher-order MRF constraints, e.g. edge alignment, bin-consistency, label cost, etc. To address joint energies like NC+MRF, we propose efficient Kernel Cut algorithms based on bound optimization. While focusing on graph cut and move-making techniques, our new unary (linear) kernel and spectral bound formulations for common pairwise clustering criteria allow to integrate them with any regularization functionals with existing discrete or continuous solvers.
关 键 词: 分割模型; 成对聚类; 边缘对齐
课程来源: 视频讲座网
数据采集: 2023-07-19:chenxin01
最后编审: 2023-07-19:chenxin01
阅读次数: 27