0


众包中的审批投票和激励措施

Approval Voting and Incentives in Crowdsourcing
课程网址: http://videolectures.net/icml2015_shah_crowdsourcing/  
主讲教师: Nihar B. Shah
开课单位: 加州大学伯克利分校
开课时间: 2015-09-27
课程语种: 英语
中文简介:
对标记训练数据的需求日益增长,使得众包成为机器学习的重要组成部分。然而,众包标签的质量受到三个因素的不利影响:(1)工人不是专家;(2) 工人的激励措施与请求者的激励措施不一致;以及(3)界面不允许工人通过强迫他们在一组选项中做出单一选择来准确地传达他们的知识。在本文中,我们通过引入批准投票来解决这些问题,以利用对真实答案有部分了解的工人的专业知识,并将其与(“严格适当”)激励相容的薪酬机制相结合。我们展示了我们的机制的最优性的严格理论保证,以及一个简单的公理化特征。我们还对Amazon Mechanical Turk进行了初步的实证研究,验证了我们的方法。
课程简介: The growing need for labeled training data has made crowdsourcing an important part of machine learning. The quality of crowdsourced labels is, however, adversely affected by three factors: (1) the workers are not experts; (2) the incentives of the workers are not aligned with those of the requesters; and (3) the interface does not allow workers to convey their knowledge accurately, by forcing them to make a single choice among a set of options. In this paper, we address these issues by introducing approval voting to utilize the expertise of workers who have partial knowledge of the true answer, and coupling it with a (“strictly proper”) incentive-compatible compensation mechanism. We show rigorous theoretical guarantees of optimality of our mechanism together with a simple axiomatic characterization. We also conduct preliminary empirical studies on Amazon Mechanical Turk which validate our approach.
关 键 词: 审批投票; 激励措施; 训练数据
课程来源: 视频讲座网
数据采集: 2023-07-19:chenxin01
最后编审: 2023-07-19:chenxin01
阅读次数: 17