首页自然科学
   首页生物学
0


高通量网络分析

High throughput network analysis
课程网址: http://videolectures.net/mlsb2010_agarwal_htn/  
主讲教师: Sumeet Agarwal
开课单位: 牛津大学
开课时间: 2010-11-08
课程语种: 英语
中文简介:
在这里,我们假设网络中编码了一些有价值的信息;这样做的一种方法是绘制网络的完整图,因为如果绘制清楚,这可以包含所有记录的信息。然而,一个明确的图只适用于非常小的网络,在这种情况下,数学抽象不太可能返回任何令人惊讶的结果。因此,为了了解任何重要规模的网络,有必要通过摘要描述来描述它,我们将其称为度量。 我们引入了一个更系统的框架,以矩阵的形式,其行对应于网络,列对应于度量;我们称之为数据矩阵。数据矩阵的每个元素包含应用于一个网络的一个度量的值。在本文中,我们证明了该框架能够系统地比较网络和度量,并证明了其在为给定目的客观选择度量方面的实用性;以及模型拟合;分析不断发展的网络;以及确定度量对网络大小、网络损坏和采样效应的变化的鲁棒性。
课程简介: Here, we presume that there is some valuable information encoded in the network; the problem is simply to find it. One approach for doing so is to draw a full diagram of the network, since this can, if clearly drawn, contain all of the recorded information. However, an unambiguous diagram is only feasible for very small networks, in which case it is unlikely that the mathematical abstraction will return any surprising results. To learn about a network of any significant size it is therefore necessary to characterise it by summary descriptions, which we will refer to as metrics. We introduce a more systematic framework, in the form of a matrix whose rows correspond to networks, and columns to metrics; we term this the data matrix. Each element of the data matrix contains the value of one metric as applied to one network. In this paper we show that this framework enables the systematic comparison of networks and metrics, and demonstrate its utility in the objective selection of metrics for a given purpose; in model fitting; in the analysis of evolving networks; and to determine the robustness of metrics to variations in network size, network damage and sampling effects.
关 键 词: 绘制网络; 数据矩阵; 采样效应
课程来源: 视频讲座网
数据采集: 2023-07-24:chenjy
最后编审: 2023-07-24:chenjy
阅读次数: 17