DeepWalk:社会表征的在线学习DeepWalk: Online Learning of Social Representations |
|
课程网址: | http://videolectures.net/kdd2014_perozzi_deep_walk/ |
主讲教师: | Bryan Perozzi |
开课单位: | 石溪大学 |
开课时间: | 2014-10-07 |
课程语种: | 英语 |
中文简介: | 我们提出了DeepWalk,这是一种学习网络中顶点潜在表示的新方法。这些潜在的表征将社会关系编码在连续的向量空间中,这很容易被统计模型利用。DeepWalk概括了语言建模和无监督特征学习(或深度学习)的最新进展,从单词序列到图形。 DeepWalk使用从截断的随机行走中获得的局部信息,通过将行走视为句子的等价物来学习潜在表征。我们展示了DeepWalk在BlogCatalog、Flickr和YouTube等社交网络的多标签网络分类任务中的潜在表现。我们的结果表明,DeepWalk优于具有挑战性的基线,这些基线允许对网络进行全局查看,尤其是在存在缺失信息的情况下。当标记数据稀疏时,DeepWalk的表示可以提供比竞争方法高出10%的F1分数。在一些实验中,DeepWalk的表示能够优于所有基线方法,同时使用的训练数据减少60%。 DeepWalk也是可扩展的。这是一种在线学习算法,它可以构建有用的增量结果,并且非常容易并行。这些特性使其适用于广泛的现实世界应用,如网络分类和异常检测。 |
课程简介: | We present DeepWalk, a novel approach for learning latent representations of vertices in a network. These latent representations encode social relations in a continuous vector space, which is easily exploited by statistical models. DeepWalk generalizes recent advancements in language modeling and unsupervised feature learning (or deep learning) from sequences of words to graphs. DeepWalk uses local information obtained from truncated random walks to learn latent representations by treating walks as the equivalent of sentences. We demonstrate DeepWalk's latent representations on several multi-label network classification tasks for social networks such as BlogCatalog, Flickr, and YouTube. Our results show that DeepWalk outperforms challenging baselines which are allowed a global view of the network, especially in the presence of missing information. DeepWalk's representations can provide F1 scores up to 10% higher than competing methods when labeled data is sparse. In some experiments, DeepWalk's representations are able to outperform all baseline methods while using 60% less training data. DeepWalk is also scalable. It is an online learning algorithm which builds useful incremental results, and is trivially parallelizable. These qualities make it suitable for a broad class of real world applications such as network classification, and anomaly detection. |
关 键 词: | 统计模型; 语言建模; 特征学习 |
课程来源: | 视频讲座网 |
数据采集: | 2023-08-02:chenxin01 |
最后编审: | 2023-08-02:chenxin01 |
阅读次数: | 21 |