数据驱动的恶意行为建模方法Data-Driven Approaches towards Malicious Behavior Modeling |
|
课程网址: | http://videolectures.net/kdd2017_tutorial17_behavior_modeling/ |
主讲教师: | Christos Faloutsos; Srijan Kumar |
开课单位: | 卡内基梅隆大学 |
开课时间: | 2017-11-21 |
课程语种: | 英语 |
中文简介: | 网络平台的安全性、可靠性和可用性经常受到恶意实体的损害,例如维基百科上的破坏者、Twitter 上的机器人连接、Facebook 上的虚假点赞等等。利用大规模现实世界行为数据开发的计算模型在识别这些恶意实体方面取得了重大进展。本教程讨论了最先进的数据驱动方法来建模恶意行为的三个主要方向:(i)基于特征的算法,其中提出了区分行为特征来预测恶意用户;(ii) 基于谱的算法,已广泛应用于有向图、无向图和二分图的设置,例如“谁关注谁”Twitter 数据和“谁喜欢什么”Facebook 数据;(iii) 基于密度的算法,它可以有效地寻找多维行为数据中可疑的、高密度的成分。本教程将介绍上述三类通用算法的详细信息,这些算法可应用于任何平台和数据集。 |
课程简介: | The safety, reliability and usability of web platforms are often compromised by malicious entities, such as vandals on Wikipedia, bot connections on Twitter, fake likes on Facebook, and several more. Computational models developed with large-scale real-world behavioral data have shown significant progress in identifying these malicious entities. This tutorial discusses three broad directions of state-of-the-art data-driven methods to model malicious behavior: (i) feature-based algorithms, in which distinguishing behavioral features are proposed to predict the malicious users; (ii) spectral-based algorithms, which have been widely used in settings of directed graphs, undirected graphs, and bipartite graphs such as "who-follows-whom" Twitter data and "who-likes-what" Facebook data; and (iii) density-based algorithms, which efficiently look for suspicious, highly-dense components in multi-dimensional behavioral data. This tutorial will introduce the details of the general algorithms from the above three classes that can be applied to any platform and dataset. |
关 键 词: | 数据驱动; 网络平台; 计算机科学 |
课程来源: | 视频讲座网 |
数据采集: | 2023-11-28:wujk |
最后编审: | 2023-11-28:wujk |
阅读次数: | 15 |