0


用于链路预测的 Weisfeiler-Lehman 神经机

Weisfeiler-Lehman Neural Machine for Link Prediction
课程网址: http://videolectures.net/kdd2017_zhang_link_prediction/  
主讲教师: 张慕涵
开课单位: 圣路易斯华盛顿大学
开课时间: 2017-10-09
课程语种: 英语
中文简介:
在本文中,我们提出了一种下一代链接预测方法,Weisfeiler-Lehman 神经机(WLNM),它以促进链接形成的图模式形式学习拓扑特征。WLNM 具有无与伦比的优势,包括比最先进的方法更高的性能以及对各种网络的普遍适用性。WLNM 提取每个目标链接的封闭子图,并将该子图编码为邻接矩阵。该编码的关键新颖之处在于基于快速散列的 Weisfeiler-Lehman (WL) 算法,该算法根据顶点在子图中的结构角色来标记顶点,同时保留子图的内在方向性。之后,神经网络在这些邻接矩阵上进行训练以学习预测模型。与传统的链路预测方法相比,WLNM 不假设特定的链接形成机制(例如公共邻居),而是从图本身学习这种机制。我们进行了全面的实验,表明 WLNM 不仅优于大量最先进的链路预测方法,而且在具有不同特征的网络中始终表现良好。
课程简介: In this paper, we propose a next-generation link prediction method, Weisfeiler-Lehman Neural Machine (WLNM), which learns topological features in the form of graph patterns that promote the formation of links. WLNM has unmatched advantages including higher performance than state-of-the-art methods and universal applicability over various kinds of networks. WLNM extracts an enclosing subgraph of each target link and encodes the subgraph as an adjacency matrix. The key novelty of the encoding comes from a fast hashing-based Weisfeiler-Lehman (WL) algorithm that labels the vertices according to their structural roles in the subgraph while preserving the subgraph's intrinsic directionality. After that, a neural network is trained on these adjacency matrices to learn a predictive model. Compared with traditional link prediction methods, WLNM does not assume a particular link formation mechanism (such as common neighbors), but learns this mechanism from the graph itself. We conduct comprehensive experiments to show that WLNM not only outperforms a great number of state-of-the-art link prediction methods, but also consistently performs well across networks with different characteristics.
关 键 词: 链路预测; 神经网络; WLNM
课程来源: 视频讲座网
数据采集: 2023-11-28:wujk
最后编审: 2023-11-28:wujk
阅读次数: 49