野外费舍尔矢量面孔Fisher Vector Faces in the Wild |
|
课程网址: | http://videolectures.net/bmvc2013_simonyan_vector_faces/ |
主讲教师: | Karen Simonyan |
开课单位: | 牛津大学 |
开课时间: | 2014-04-03 |
课程语种: | 英语 |
中文简介: | 最近几篇关于自动人脸验证的论文通过开发新颖的、专门的表示形式,在这个问题上的性能优于 SIFT 等标准功能,从而显着提高了性能标准。 本文做出了两个贡献:首先,有点令人惊讶的是,我们表明密集采样的 SIFT 特征上的 Fisher 向量(即现成的对象识别表示)能够在挑战“野外标记面孔”基准;其次,由于费舍尔向量的维度非常高,我们表明可以使用判别性度量学习从中学习紧凑的描述符。这种紧凑的描述符具有更好的识别精度,非常适合大规模识别任务。 |
课程简介: | Several recent papers on automatic face verification have significantly raised the performance bar by developing novel, specialised representations that outperform standard features such as SIFT for this problem. This paper makes two contributions: first, and somewhat surprisingly, we show that Fisher vectors on densely sampled SIFT features, i.e. an off-the-shelf object recognition representation, are capable of achieving state-of-the-art face verification performance on the challenging “Labeled Faces in the Wild” benchmark; second, since Fisher vectors are very high dimensional, we show that a compact descriptor can be learnt from them using discriminative metric learning. This compact descriptor has a better recognition accuracy and is very well suited to large scale identification tasks. |
关 键 词: | 自动人脸验证; 远程教育; 投射学习 |
课程来源: | 视频讲座网 |
数据采集: | 2023-12-14:wujk |
最后编审: | 2023-12-14:wujk |
阅读次数: | 24 |