0


TrioVecEvent:地理标记推文流中基于嵌入的在线本地事件检测

TrioVecEvent: Embedding-Based Online Local Event Detection in Geo-Tagged Tweet Streams
课程网址: http://videolectures.net/kdd2017_zhang_TrioVecEvent/  
主讲教师: Chao Zhang
开课单位: 伊利诺伊大学
开课时间: 2017-10-09
课程语种: 英语
中文简介:
对于从灾害控制到犯罪监控和地点推荐等广泛应用来说,在当地事件(例如抗议、灾难)发生时检测它们是一项重要任务。近年来,人们对利用地理标记推文流进行在线本地事件检测越来越感兴趣。然而,现有方法的准确性对于构建可靠的本地事件检测系统仍然不能令人满意。我们提出了 TrioVecEvent,一种利用多模态嵌入来实现准确的在线本地事件检测的方法。TrioVecEvent 的有效性得益于其两步检测方案。首先,它通过将查询窗口中的推文划分为连贯的地理主题集群来确保底层本地事件的高覆盖率。为了生成高质量的地理主题集群,我们通过学习位置、时间和文本的多模态嵌入来捕获短文本语义,然后使用新颖的贝叶斯混合模型执行在线聚类。其次,TrioVecEvent 将地理主题集群视为候选事件,并提取一组特征来对候选事件进行分类。利用多模态嵌入作为背景知识,我们引入了可以很好地表征局部事件的判别特征,这使得能够用少量的训练数据从候选池中精确定位真实的局部事件。我们使用众包来评估 TrioVecEvent,发现它极大地提高了最先进方法的性能。TrioVecEvent 将地理主题集群视为候选事件,并提取一组特征来对候选事件进行分类。利用多模态嵌入作为背景知识,我们引入了可以很好地表征局部事件的判别特征,这使得能够用少量的训练数据从候选池中精确定位真实的局部事件。我们使用众包来评估 TrioVecEvent,发现它极大地提高了最先进方法的性能。TrioVecEvent 将地理主题集群视为候选事件,并提取一组特征来对候选事件进行分类。利用多模态嵌入作为背景知识,我们引入了可以很好地表征局部事件的判别特征,这使得能够用少量的训练数据从候选池中精确定位真实的局部事件。我们使用众包来评估 TrioVecEvent,发现它极大地提高了最先进方法的性能。这使得能够使用少量的训练数据从候选池中精确定位真实的本地事件。我们使用众包来评估 TrioVecEvent,发现它极大地提高了最先进方法的性能。这使得能够使用少量的训练数据从候选池中精确定位真实的本地事件。我们使用众包来评估 TrioVecEvent,发现它极大地提高了最先进方法的性能。
课程简介: Detecting local events (e.g., protest, disaster) at their onsets is an important task for a wide spectrum of applications, ranging from disaster control to crime monitoring and place recommendation. Recent years have witnessed growing interest in leveraging geo-tagged tweet streams for online local event detection. Nevertheless, the accuracies of existing methods still remain unsatisfactory for building reliable local event detection systems. We propose TrioVecEvent, a method that leverages multimodal embeddings to achieve accurate online local event detection. The effectiveness of TrioVecEvent is underpinned by its two-step detection scheme. First, it ensures a high coverage of the underlying local events by dividing the tweets in the query window into coherent geo-topic clusters. To generate quality geo-topic clusters, we capture short-text semantics by learning multimodal embeddings of the location, time, and text, and then perform online clustering with a novel Bayesian mixture model. Second, TrioVecEvent considers the geo-topic clusters as candidate events and extracts a set of features for classifying the candidates. Leveraging the multimodal embeddings as background knowledge, we introduce discriminative features that can well characterize local events, which enables pinpointing true local events from the candidate pool with a small amount of training data. We have used crowdsourcing to evaluate TrioVecEvent, and found that it improves the performance of the state-of-the-art method by a large margin.
关 键 词: 事件检测; 候选事件; 数据科学
课程来源: 视频讲座网
数据采集: 2023-12-25:wujk
最后编审: 2023-12-25:wujk
阅读次数: 20