学习可证明的分类数据最优规则列表Learning Certifiably Optimal Rule Lists for Categorical Data |
|
课程网址: | http://videolectures.net/kdd2017_angelino_categorical_data/ |
主讲教师: | Elaine Angelino |
开课单位: | 加州大学伯克利分校 |
开课时间: | 2017-10-09 |
课程语种: | 英语 |
中文简介: | 我们提出了一种自定义离散优化技术的设计和实现,用于在分类特征空间上构建规则列表。我们的算法提供了最佳解决方案,并具有最佳性证书。通过利用算法边界、高效的数据结构和计算重用,我们实现了几个数量级的时间加速并大量减少了内存消耗。我们证明我们的方法可以在几秒钟内生成针对实际问题的最佳规则列表。该框架是 CART 和其他决策树方法的新颖替代方案。 |
课程简介: | We present the design and implementation of a custom discrete optimization technique for building rule lists over a categorical feature space. Our algorithm provides the optimal solution, with a certificate of optimality. By leveraging algorithmic bounds, efficient data structures, and computational reuse, we achieve several orders of magnitude speedup in time and a massive reduction of memory consumption. We demonstrate that our approach produces optimal rule lists on practical problems in seconds. This framework is a novel alternative to CART and other decision tree methods. |
关 键 词: | 分类数据; 算法边界; 数据科学 |
课程来源: | 视频讲座网 |
数据采集: | 2023-12-26:wujk |
最后编审: | 2024-01-25:liyy |
阅读次数: | 19 |