0


推荐系统的协作变分自动编码器

Collaborative Variational Autoencoder for Recommender Systems
课程网址: http://videolectures.net/kdd2017_li_recommender_systems/  
主讲教师: 李晓鹏
开课单位: 香港科技大学
开课时间: 2017-10-09
课程语种: 英语
中文简介:
由于其成功的性能,现代推荐系统通常采用带有评级信息的协同过滤来向用户推荐项目。然而,由于基于协作的方法存在稀疏性、冷启动等缺点,同时考虑评分和内容信息的混合方法受到了更多关注。该领域的大多数先前工作无法从推荐任务的内容中学习良好的表示或仅考虑内容的文本模态,因此它们的方法在当前的多媒体场景中非常有限。本文提出了一种称为协作变分自动编码器(CVAE)的贝叶斯生成模型,该模型同时考虑多媒体场景中的评级和推荐内容。该模型以无监督的方式从内容数据中学习深层潜在表示,并从内容和评级中学习项目和用户之间的隐式关系。与之前采用去噪标准的工作不同,所提出的 CVAE 通过推理网络学习潜在空间而不是观察空间中内容的潜在分布,并且可以轻松扩展到文本以外的其他多媒体模式。实验表明,CVAE 能够显着优于最先进的推荐方法,具有更稳健的性能。
课程简介: Modern recommender systems usually employ collaborative filtering with rating information to recommend items to users due to its successful performance. However, because of the drawbacks of collaborative-based methods such as sparsity, cold start, etc., more attention has been drawn to hybrid methods that consider both the rating and content information. Most of the previous works in this area cannot learn a good representation from content for recommendation task or consider only text modality of the content, thus their methods are very limited in current multimedia scenario. This paper proposes a Bayesian generative model called collaborative variational autoencoder (CVAE) that considers both rating and content for recommendation in multimedia scenario. The model learns deep latent representations from content data in an unsupervised manner and also learns implicit relationships between items and users from both content and rating. Unlike previous works with denoising criteria, the proposed CVAE learns a latent distribution for content in latent space instead of observation space through an inference network and can be easily extended to other multimedia modalities other than text. Experiments show that CVAE is able to significantly outperform the state-of-the-art recommendation methods with more robust performance.
关 键 词: 自动编码器; 贝叶斯生成模型; 数据科学
课程来源: 视频讲座网
数据采集: 2023-12-26:wujk
最后编审: 2023-12-26:wujk
阅读次数: 31