0


PReP:异构信息网络中概率视角的基于路径的相关性

PReP: Path­Based Relevance from a Probabilistic Perspective in Heterogeneous Information Networks
课程网址: http://videolectures.net/kdd2017_shi_information_networks/  
主讲教师: 于石
开课单位: 伊利诺伊大学
开课时间: 2017-10-09
课程语种: 英语
中文简介:
作为网络化和多类型数据的强大表示范式,异构信息网络(HIN)无处不在。同时,定义适当的相关性度量一直是网络挖掘任务的一个基本问题和非常重要的现实意义。受到我们对现有基于路径的相关性度量的概率解释的启发,我们建议从概率的角度研究 HIN 相关性。我们还从现实世界的数据中进行识别,并提出对跨元路径协同进行建模,这是定义基于路径的 HIN 相关性的一个重要特征,并且尚未通过现有方法进行建模。建立生成模型来派生一种新颖的基于路径的相关性度量,该度量是数据驱动的并针对每个 HIN 量身定制。我们开发了一种推理算法来找到模型参数的最大后验(MAP)估计,这需要一些不平凡的技巧。对两个现实世界数据集的实验证明了所提出的模型和相关性度量的有效性。
课程简介: As a powerful representation paradigm for networked and multi-typed data, the heterogeneous information network (HIN) is ubiquitous. Meanwhile, defining proper relevance measures has always been a fundamental problem and of great pragmatic importance for network mining tasks. Inspired by our probabilistic interpretation of existing path-based relevance measures, we propose to study HIN relevance from a probabilistic perspective. We also identify, from real-world data, and propose to model cross-meta-path synergy, which is a characteristic important for defining path-based HIN relevance and has not been modeled by existing methods. A generative model is established to derive a novel path-based relevance measure, which is data-driven and tailored for each HIN. We develop an inference algorithm to find the maximum a posteriori (MAP) estimate of the model parameters, which entails non-trivial tricks. Experiments on two real-world datasets demonstrate the effectiveness of the proposed model and relevance measure.
关 键 词: 异构信息网络; 网络挖掘; 数据科学
课程来源: 视频讲座网
数据采集: 2023-12-26:wujk
最后编审: 2023-12-26:wujk
阅读次数: 24