0


通过时变图形套索进行网络推理

Network Inference via the Time­Varying Graphical Lasso
课程网址: http://videolectures.net/kdd2017_hallac_network_inference/  
主讲教师: David Hallac
开课单位: 斯坦福大学
开课时间: 2017-10-09
课程语种: 英语
中文简介:
许多重要问题可以建模为互连实体的系统,其中每个实体都记录与时间相关的观察或测量。为了发现趋势、检测异常并解释此类数据的时间动态,必须了解不同实体之间的关系以及这些关系如何随时间演变。在本文中,我们介绍了时变图形套索(TVGL),这是一种从原始时间序列数据推断时变网络的方法。我们通过估计稀疏时变逆协方差矩阵来解决该问题,该矩阵揭示了实体之间相互依赖的动态网络。由于动态网络推理是一项计算成本高昂的任务,我们基于乘子交替方向法(ADMM)推导出可扩展的消息传递算法,以有效地解决这个问题。我们还讨论了几个扩展,包括用于更新模型并实时合并新观察结果的流算法。最后,我们在真实数据集和合成数据集上评估我们的 TVGL 算法,获得可解释的结果,并在准确性和可扩展性方面优于最先进的基线。
课程简介: Many important problems can be modeled as a system of interconnected entities, where each entity is recording time-dependent observations or measurements. In order to spot trends, detect anomalies, and interpret the temporal dynamics of such data, it is essential to understand the relationships between the different entities and how these relationships evolve over time. In this paper, we introduce the time-varying graphical lasso (TVGL), a method of inferring time-varying networks from raw time series data. We cast the problem in terms of estimating a sparse time-varying inverse covariance matrix, which reveals a dynamic network of interdependencies between the entities. Since dynamic network inference is a computationally expensive task, we derive a scalable message-passing algorithm based on the Alternating Direction Method of Multipliers (ADMM) to solve this problem in an efficient way. We also discuss several extensions, including a streaming algorithm to update the model and incorporate new observations in real time. Finally, we evaluate our TVGL algorithm on both real and synthetic datasets, obtaining interpretable results and outperforming state-of-the-art baselines in terms of both accuracy and scalability.
关 键 词: 时变图形套索; 时变网络; 数据科学
课程来源: 视频讲座网
数据采集: 2023-12-26:wujk
最后编审: 2023-12-26:wujk
阅读次数: 29