0


一种用于极端聚类层次算法

An Online Hierarchical Algorithm for Extreme Clustering
课程网址: http://videolectures.net/kdd2017_kobren_extreme_clustering/  
主讲教师: 信息不详。欢迎您在右侧留言补充。
开课单位: 马萨诸塞大学
开课时间: 2017-10-09
课程语种: 英语
中文简介:
许多现代聚类方法可以很好地扩展到大量数据项 N,但不能扩展到大量聚类 K。本文介绍了 PERCH,一种用于在线分层聚类的新非贪婪算法,可扩展到大量 N 和 K ——我们称之为极端聚类的问题设置。我们的算法有效地将新数据点路由到增量构建的树的叶子。出于对准确性和速度的渴望,我们的方法执行树旋转,以提高子树纯度并鼓励平衡。我们证明,在自然可分离性假设下,我们的非贪婪算法将生成具有完美树状图纯度的树,无论在线数据到达顺序如何。
课程简介: Many modern clustering methods scale well to a large number of data items, N, but not to a large number of clusters, K. This paper introduces PERCH, a new non-greedy algorithm for online hierarchical clustering that scales to both massive N and K--a problem setting we term extreme clustering. Our algorithm efficiently routes new data points to the leaves of an incrementally-built tree. Motivated by the desire for both accuracy and speed, our approach performs tree rotations for the sake of enhancing subtree purity and encouraging balancedness. We prove that, under a natural separability assumption, our non-greedy algorithm will produce trees with perfect dendrogram purity regardless of online data arrival order. Our experiments demonstrate that PERCH constructs more accurate trees than other tree-building clustering algorithms and scales well with both N and K, achieving a higher quality clustering than the strongest flat clustering competitor in nearly half the time.
关 键 词: 现代聚类方法; 分层聚类; 数据科学
课程来源: 视频讲座网
数据采集: 2023-12-27:wujk
最后编审: 2023-12-27:wujk
阅读次数: 15