语义桌面数据连接到Web的数据Linking Semantic Desktop Data to the Web of Data |
|
课程网址: | http://videolectures.net/iswc2011_dragan_linking/ |
主讲教师: | Laura Dragan |
开课单位: | 爱尔兰国立大学 |
开课时间: | 2011-11-25 |
课程语种: | 英语 |
中文简介: | 语义桌面的目标是使更好的组织我们电脑上的个人信息,利用语义技术在桌面上。然而,在我们的桌面信息往往是不完整的,因为它是基于我们的主观看法,或者关于某个实体的有限的知识。另一方面,网络的数据包含了几乎所有的信息,从不同的来源。连接桌面的Web数据将丰富和补充的桌面信息。把信息从Web上的数据自动将负担的搜索信息的用户。此外,连接两个网络的数据开辟了先进的个人服务的可能性在桌面上。我们的解决方案解决上面提出的通过使用语义搜索引擎对Web上的数据的问题,如Sindice,查找和检索相关的子集的实体网络。我们提出了一个匹配的框架,使用相结合的结构配置的启发式规则比较数据图,实现在连接决策准确性高。我们评估我们的方法与现实世界的数据;建立相关的专家判断的标准,我们衡量我们的系统对它的性能。我们表明,它是可能的自动桌面数据在Web数据链路的一种有效方法。 |
课程简介: | The goal of the Semantic Desktop is to enable better organization of the personal information on our computers, by applying semantic technologies on the desktop. However, information on our desktop is often incomplete, as it is based on our subjective view, or limited knowledge about an entity. On the other hand, the Web of Data contains information about virtually everything, generally from multiple sources. Connecting the desktop to the Web of Data would thus enrich and complement desktop information. Bringing in information from the Web of Data automatically would take the burden of searching for information o the user. In addition, connecting the two networks of data opens up the possibility of advanced personal services on the desktop. Our solution tackles the problems raised above by using a semantic search engine for the Web of Data, such as Sindice, to find and retrieve a relevant subset of entities from the web. We present a matching framework, using a combination of configurable heuristics and rules to compare data graphs, that achieves a high degree of precision in the linking decision.We evaluate our methodology with real-world data; create a gold standard from relevance judgements by experts, and we measure the performance of our system against it. We show that it is possible to automatically link desktop data with web data in an effective way. |
关 键 词: | Web数据; 语义搜索引擎; 比较数据图 |
课程来源: | 视频讲座网 |
最后编审: | 2021-03-12:nkq |
阅读次数: | 48 |