一种同时聚类和复杂数据的学习框架A Framework for Simultaneous Co-clustering and Learning from Complex Data |
|
课程网址: | http://videolectures.net/kdd07_deodhar_affsc/ |
主讲教师: | Meghana Deodhar |
开课单位: | 德克萨斯大学 |
开课时间: | 2007-09-15 |
课程语种: | 英语 |
中文简介: | 困难的分类或回归问题,从业者经常段的数据转化为相对同质的组,然后建立一个模型为每个组。这两个步骤的程序,通常会导致更简单,更可解释的和可操作的模式,没有任何损失的准确度。我们认为,如预测客户行为的跨产品的问题,在独立的变量,可以很自然地划分为两组。旋转操作现在可以导致因变量显示为“产品”的客户数据矩阵的条目。我们提出了一个基于模型的聚类算法(元),进行聚类和施工预测模型的迭代提高簇分配和适合的模型。该算法可证明收敛到一个合适的成本函数的局部最小。该框架不仅概括了聚类和协同过滤模型,但也可以被看作是同时分割和分类或回归,这是优于独立的数据聚类和建筑模型。此外,它适用于广泛的双峰或多峰的数据,并可以很容易地专门解决分类和回归问题。我们证明我们的方法的有效性在这两个问题,通过对真实和合成数据的实验。 |
课程简介: | For difficult classification or regression problems, practitioners often segment the data into relatively homogenous groups and then build a model for each group. This two-step procedure usually results in simpler, more interpretable and actionable models without any loss in accuracy. We consider problems such as predicting customer behavior across products, where the independent variables can be naturally partitioned into two groups. A pivoting operation can now result in the dependent variable showing up as entries in a “customer by product” data matrix. We present a modelbased co-clustering (meta)-algorithm that interleaves clustering and construction of prediction models to iteratively improve both cluster assignment and fit of the models. This algorithm provably converges to a local minimum of a suitable cost function. The framework not only generalizes co-clustering and collaborative filtering to model-based coclustering, but can also be viewed as simultaneous co-segmentation and classification or regression, which is better than independently clustering the data first and then building models. Moreover, it applies to a wide range of bi-modal or multimodal data, and can be easily specialized to address classification and regression problems. We demonstrate the effectiveness of our approach on both these problems through experimentation on real and synthetic data. |
关 键 词: | 旋转操作; 数据聚类; 建筑模型 |
课程来源: | 视频讲座网 |
最后编审: | 2021-02-03:nkq |
阅读次数: | 84 |