首页数学
0


提高半监督聚类:特征投影角度

Enhancing Semi-Supervised Clustering: A Feature Projection Perspective
课程网址: http://videolectures.net/kdd07_tang_essc/  
主讲教师: Wei Tang
开课单位: 佛罗里达大西洋大学
开课时间: 2007-12-14
课程语种: 英语
中文简介:
半监督聚类利用有限的监督的标记的实例或成对实例约束的形式帮助无监督聚类往往显着提高聚类的性能。尽管专家知识在这个问题上花费大量,大多数现有的工作不适合处理高维稀疏数据。本文填补了这一关键的无效基础上开发的半监督聚类方法,通过特征投影的球面文本(屏幕)。具体来说,我们制定的约束引导的特征投影的问题,可以与半监督聚类算法,有效地降低数据的维数能很好的集成。事实上,在几个真实数据集的实验结果表明,该屏幕的方法可以有效地处理高维数据,并提供了一个有吸引力的聚类性能。
课程简介: Semi supervised clustering uses limited supervised labeled instances or paired instance constraints to help unsupervised clustering, which often significantly improves the performance of clustering. Although expert knowledge costs a lot on this problem, most of the existing work is not suitable for dealing with high-dimensional sparse data. This paper fills this key void based on the development of a semi supervised clustering method through feature projection of spherical text (screen). Specifically, our constraint guided feature projection problem can be well integrated with semi supervised clustering algorithm, which can effectively reduce the dimension of data. In fact, the experimental results on several real data sets show that the screen method can effectively deal with high-dimensional data and provide an attractive clustering performance.
关 键 词: 半监督聚类; 高维稀疏数据; 维数
课程来源: 视频讲座网
最后编审: 2021-08-27:zyk
阅读次数: 56