扫描:一种网络结构聚类算法SCAN: A Structural Clustering Algorithm for Networks |
|
课程网址: | http://videolectures.net/kdd07_xu_scan/ |
主讲教师: | Xiaowei Xu |
开课单位: | 阿肯色大学 |
开课时间: | 2007-09-14 |
课程语种: | 英语 |
中文简介: | 网络聚类(或分割)是一个重要的任务,在网络基础结构的发现。许多算法发现集群通过集群内边缘的数量最大化。虽然这种算法找到有用的和有趣的结构,他们往往无法识别和隔离两个顶点的顶点,扮演着特殊的角色-顶点的桥梁集群(集线器)和顶点,轻微连接到集群(异常值)。识别枢纽是非常有用的应用程序,如由于集线器负责传播思想或疾病的病毒营销和流行病学。相反,离群值有很少或没有影响,并可能被分离为数据中的噪声。在本文中,我们提出了一种新的算法,称为扫描(网络结构聚类算法),它可以检测集群,集线器和网络中的异常值。它基于集群的结构相似性度量的顶点。该算法是快速有效的,访问每个顶点只有一次。使用合成和真实数据集的实证评价表明,该方法性能优于其他方法,如基于模块化的算法。 |
课程简介: | Network clustering (or graph partitioning) is an important task for the discovery of underlying structures in networks. Many algorithms find clusters by maximizing the number of intra-cluster edges. While such algorithms find useful and interesting structures, they tend to fail to identify and isolate two kinds of vertices that play special roles - vertices that bridge clusters (hubs) and vertices that are marginally connected to clusters (outliers). Identifying hubs is useful for applications such as viral marketing and epidemiology since hubs are responsible for spreading ideas or disease. In contrast, outliers have little or no influence, and may be isolated as noise in the data. In this paper, we proposed a novel algorithm called SCAN (Structural Clustering Algorithm for Networks), which detects clusters, hubs and outliers in networks. It clusters vertices based on a structural similarity measure. The algorithm is fast and efficient, visiting each vertex only once. An empirical evaluation of the method using both synthetic and real datasets demonstrates superior performance over other methods such as the modularity-based algorithms. |
关 键 词: | 网络聚类; 扫描; 桥梁集群 |
课程来源: | 视频讲座网 |
最后编审: | 2020-07-17:yumf |
阅读次数: | 302 |