特征的线性支持向量机的成型Feature Shaping for Linear SVM Classifiers |
|
课程网址: | http://videolectures.net/kdd09_scholz_fslsvmc/ |
主讲教师: | Martin Scholz |
开课单位: | 惠普公司 |
开课时间: | 2009-09-14 |
课程语种: | 英语 |
中文简介: | 线性分类器已被证明对许多辨别任务有效。无论学习算法本身如何,最终分类器都具有乘以每个特征的权重。这表明理想情况下每个输入特征应与目标变量(或反相关)线性相关,而原始特征可能是高度非线性的。在本文中,我们尝试重新整形每个输入要素,以便适合使用线性权重,并根据其预测值按比例缩放不同的要素。我们证明了这种预处理对于文本分类任务的大基准以及UCI数据集上的线性SVM分类器是有益的。 |
课程简介: | Linear classifiers have been shown to be effective for many discrimination tasks. Irrespective of the learning algorithm itself, the final classifier has a weight to multiply by each feature. This suggests that ideally each input feature should be linearly correlated with the target variable (or anti-correlated), whereas raw features may be highly non-linear. In this paper, we attempt to re-shape each input feature so that it is appropriate to use with a linear weight and to scale the different features in proportion to their predictive value. We demonstrate that this pre-processing is beneficial for linear SVM classifiers on a large benchmark of text classification tasks as well as UCI datasets. |
关 键 词: | 线性分类器; 高度非线性; 线性重量和规模 |
课程来源: | 视频讲座网 |
最后编审: | 2020-09-17:chenxin |
阅读次数: | 249 |