0


特征的线性支持向量机的成型

Feature Shaping for Linear SVM Classifiers
课程网址: http://videolectures.net/kdd09_scholz_fslsvmc/  
主讲教师: Martin Scholz
开课单位: 惠普公司
开课时间: 2009-09-14
课程语种: 英语
中文简介:
线性分类器已被证明对许多辨别任务有效。无论学习算法本身如何,最终分类器都具有乘以每个特征的权重。这表明理想情况下每个输入特征应与目标变量(或反相关)线性相关,而原始特征可能是高度非线性的。在本文中,我们尝试重新整形每个输入要素,以便适合使用线性权重,并根据其预测值按比例缩放不同的要素。我们证明了这种预处理对于文本分类任务的大基准以及UCI数据集上的线性SVM分类器是有益的。
课程简介: Linear classifiers have been shown to be effective for many discrimination tasks. Irrespective of the learning algorithm itself, the final classifier has a weight to multiply by each feature. This suggests that ideally each input feature should be linearly correlated with the target variable (or anti-correlated), whereas raw features may be highly non-linear. In this paper, we attempt to re-shape each input feature so that it is appropriate to use with a linear weight and to scale the different features in proportion to their predictive value. We demonstrate that this pre-processing is beneficial for linear SVM classifiers on a large benchmark of text classification tasks as well as UCI datasets.
关 键 词: 线性分类器; 高度非线性; 线性重量和规模
课程来源: 视频讲座网
最后编审: 2020-09-17:chenxin
阅读次数: 249