0


回指和共指解析:仍然是一个难题?它已经走了多远,对NLP有什么影响,前进的道路是什么?

Anaphora and coreference resolution: still a hard nut to crack? How far has it gone, what is its impact on NLP and what are the ways forward?
课程网址: https://videolectures.net/jota_mitkov_anaphora/  
主讲教师: Ruslan Mitkov
开课单位: JOTA会议
开课时间: 2018-05-08
课程语种: 英语
中文简介:
回指和共指消解可以说是最具挑战性的自然语言处理(NLP)任务之一。回指消解和共指消解的研究几乎完全集中在各种算法的发展和内在评价上。虽然出版物报告了积极的结果,但发言人表示,复制一些最著名的算法揭示了令人担忧的原因,因为性能远不理想,评估也远不透明。回指和共指消解作为任务对NLP系统的运行至关重要,不应孤立地看待,而应仅在NLP应用的更广泛范围内看待。回指或共指解析模块对其所属的更大NLP系统的外在评估或影响是一个研究不足的话题,说话者进行的几项研究试图填补这一空白。更具体地说,演讲者讨论了回指和共指消解是否可以提高四种NLP应用程序的性能(如果可以,在多大程度上?):文本概括、术语提取、文本分类和文本隐含。本文最后就回指和共指消解如何做得更好提出了建议,并概述了作者最新的相关研究。
课程简介: Anaphora and coreference resolution are arguably among the most challenging Natural Language Processing (NLP) tasks. Research in anaphora resolution and coreference resolution has focused almost exclusively on the development and intrinsic evaluation of various algorithms. While publications report positive results, the speaker shows that the replication of some of the best-known algorithms reveals reasons for concern in that the performance is far from ideal and the evaluation is far from transparent. Anaphora and coreference resolution as tasks are crucial for the operation of NLP systems and should not be regarded in isolation but only in the wider picture of NLP applications. The extrinsic evaluation or the impact of an anaphora or coreference resolution module on a larger NLP system of which they are part, is an under-researched topic and several studies conducted by the speaker, seek to fill in this gap. More specifically, the speaker discusses whether anaphora and coreference resolution can improve (and if they can, to what extent?) or not the performance of four NLP applications: text summarisation, term extraction, text categorisation and textual entailment. The presentation finishes with suggested ways forward as to how anaphora and coreference resolution can do better and outlines the latest related research of the author.
关 键 词: 回指解析; 共指指解; NLP
课程来源: 视频讲座网
数据采集: 2024-04-18:liyq
最后编审: 2024-05-31:liyy
阅读次数: 27