聚类同步Clustering by Synchronization |
|
课程网址: | http://videolectures.net/kdd2010_shao_cs/ |
主讲教师: | Junming Shao |
开课单位: | 路德维希马克西米兰大学 |
开课时间: | 2010-10-01 |
课程语种: | 英语 |
中文简介: | 同步是一种强有力的基本概念,在自然界中调节从细胞代谢到个体群体中的社会行为的各种复杂过程。因此,已经广泛研究了同步现象,并且已经提出了鲁棒地捕获动态同步过程的模型,例如,广泛的Kuramoto模型。受强大的同步概念启发,我们提出了Sync,一种新颖的聚类方法。基本思想是将每个数据对象视为相位振荡器,并模拟对象随时间的交互行为。随着时间的推移,类似的对象自然地同步在一起并形成不同的聚类。继承自同步,Sync具有几个理想的属性:动态同步显示的集群真实地反映了数据集的内在结构,Sync不依赖于任何分布假设,并允许检测任意数量,形状和大小的集群。此外,同步的概念允许自然的异常值处理,因为异常值不与集群对象同步。对于全自动聚类,我们建议将Sync与最小描述长度原则相结合。对合成和现实世界数据的广泛实验证明了我们方法的有效性和有效性。 |
课程简介: | Synchronization is a powerful basic concept in nature regulating a large variety of complex processes ranging from the metabolism in the cell to social behavior in groups of individuals. Therefore, synchronization phenomena have been extensively studied and models robustly capturing the dynamical synchronization process have been proposed, e.g. the Extensive Kuramoto Model. Inspired by the powerful concept of synchronization, we propose Sync, a novel approach to clustering. The basic idea is to view each data object as a phase oscillator and simulate the interaction behavior of the objects over time. As time evolves, similar objects naturally synchronize together and form distinct clusters. Inherited from synchronization, Sync has several desirable properties: The clusters revealed by dynamic synchronization truly reflect the intrinsic structure of the data set, Sync does not rely on any distribution assumption and allows detecting clusters of arbitrary number, shape and size. Moreover, the concept of synchronization allows natural outlier handling, since outliers do not synchronize with cluster objects. For fully automatic clustering, we propose to combine Sync with the Minimum Description Length principle. Extensive experiments on synthetic and real world data demonstrate the effectiveness and efficiency of our approach. |
关 键 词: | 同步; 动态同步; 数据的内在结构; 合成 |
课程来源: | 视频讲座网 |
最后编审: | 2021-08-27:zyk |
阅读次数: | 96 |