首页数学
   首页自然科学
0


从线性到非线性n宽度:简化建模中的最优性

From linear to nonlinear n-width : optimality in reduced modelling
课程网址: https://videolectures.net/8ecm2021_cohen_from_linear/  
主讲教师: Albert Cohen
开课单位: 8ECM会议
开课时间: 2021-07-06
课程语种: 英语
中文简介:
Kolmogorov引入了n-width的概念,作为一种根据紧集在线性空间中的逼近性来测量紧集大小的方法。从数值的角度来看,它可以被认为是基于线性近似的算法性能的基准。近年来,这一概念在分析由参数问题描述的复杂物理问题的简化建模策略方面被证明是非常有意义的。本讲座将首先回顾这一领域的两个重要结果,它们涉及(i)贪婪算法对最优空间的实际构建和(ii)在某些全纯变换下保持宽度衰减率。然后,它将重点关注最近提出n宽度的非线性版本的尝试,这些概念如何与度量熵相关,以及它们如何与实际应用相关。
课程简介: The concept of n-width has been introduced by Kolmogorov as a way of measuring the size of compact sets in terms of their approximability by linear spaces. From a numerical perspective it may be thought as a benchmark for the performance of algorithms based on linear approximation. In recent years this concept has proved to be highly meaningful in the analysis of reduced modeling strategies for complex physical problems described by parametric problems. This lecture will first review two significant results in this area that concern (i) the practical construction of optimal spaces by greedy algorithms and (ii) the preservation of the rate of decay of widths under certain holomorphic transformation. It will then focus on recent attempts to propose non-linear version of n-widths, how these notions relate to metric entropies, and how they could be relevant to practical applications.
关 键 词: 非线性宽度; 简化建模; 最优性
课程来源: 视频讲座网
数据采集: 2024-05-28:liyq
最后编审: 2024-05-28:liyq
阅读次数: 15