子集乘积和排列Subset products and derangements |
|
课程网址: | https://videolectures.net/8ecm2021_shalev_subset_products/ |
主讲教师: | Aner Shalev |
开课单位: | 8ECM会议 |
开课时间: | 2021-07-06 |
课程语种: | 英语 |
中文简介: | 在过去的二十年里,人们对有限群中子集的乘积产生了浓厚的兴趣。两个重要的例子是Gowers的拟随机群理论及其在Nikolov、Pyber、Babai等人的应用,以及近似群理论和Breuillard Green Tao和Pyber Szabo关于有界秩李型有限简单群增长的乘积定理,扩展了Helfgott的工作。关于两个子集的乘积可以说什么?我将讨论最近与Michael Larsen和Pham Tiep在这个具有挑战性的问题上的联合工作,重点讨论有限简单群的两个正规子集的乘积,并推导出许多应用。我们的主要应用涉及自约旦时代以来研究的无序排列(即不动点自由排列)。我们证明了一个足够大的有限简单传递置换群的每个元素都是两个无序的乘积。还将讨论相关的结果和问题。证明结合了群论、代数几何和表示论;应用Fulman和Guralnick对Boston-Shalev猜想关于无序比例的证明。 |
课程简介: | In the past two decades there has been intense interest in products of subsets in finite groups. Two important examples are Gowers’ theory of Quasi Random Groups and its applications by Nikolov, Pyber, Babai and others, and the theory of Approximate Groups and the Product Theorem of Breuillard-Green-Tao and Pyber-Szabo on growth in finite simple groups of Lie type of bounded rank, extending Helfgott’s work. These deep theories yield strong results on products of three subsets (covering, growth). What can be said about products of two subsets? I will discuss a recent joint work with Michael Larsen and Pham Tiep on this challenging problem, focusing on products of two normal subsets of finite simple groups, and deriving a number of applications. Our main application concerns derangements (namely, fixed-point-free permutations), studied since the days of Jordan. We show that every element of a sufficiently large finite simple transitive permutation group is a product of two derangements. Related results and problems will also be discussed. The proofs combine group theory, algebraic geometry and representation theory; it applies the proof by Fulman and Guralnick of the Boston-Shalev conjecture on the proportion of derangements. |
关 键 词: | 子集乘积; 拟随机群理论; 无序排列 |
课程来源: | 视频讲座网 |
数据采集: | 2024-05-28:liyq |
最后编审: | 2024-05-28:liyq |
阅读次数: | 18 |