首页数学
   首页自然科学
0


接触3-流形辛填充的拓扑

Topology of symplectic fillings of contact $3$-manifolds
课程网址: https://videolectures.net/8ecm2021_ozbagci_topology_fillings/  
主讲教师: Burak Özbağcı
开课单位: 8ECM会议
开课时间: 2021-07-06
课程语种: 英语
中文简介:
自从Donaldson证明了每一个辛4-流形都允许Lefschetz铅笔,Giroux证明了每个接触3-流形都允许一个自适应的开卷分解以来,在世纪之交,Lefschetzfibrations和开卷已经被卓有成效地用于获得关于接触3-流形辛填充拓扑的有趣结果。在这次演讲中,我将根据过去20年来与几位合著者的共同工作,介绍我对当前主题的贡献。
课程简介: Ever since Donaldson showed that every symplectic 4-manifold admits a Lefschetz pencil and Giroux proved that every contact 3-manifold admits an adapted open book decomposition, at the turn of the century, Lefschetz fibrations and open books have been used fruitfully to obtain interesting results about the topology of symplectic fillings of contact 3-manifolds. In this talk, I will present my contribution to the subject at hand based on joint work with several coauthors during the past 20 years.
关 键 词: 流形辛填充; 开卷分解; 接触3-流形
课程来源: 视频讲座网
数据采集: 2024-05-28:liyq
最后编审: 2024-05-28:liyq
阅读次数: 17