低级别更新的快速算法Fast algorithms from low-rank updates |
|
课程网址: | https://videolectures.net/8ecm2021_kressner_fast_updates/ |
主讲教师: | Daniel Kressner |
开课单位: | 8ECM会议 |
开课时间: | 2021-07-06 |
课程语种: | 英语 |
中文简介: | 开发求解大规模线性系统的高效数值算法是数值线性代数的成功案例之一,它对我们执行复杂数值模拟和大规模统计计算的能力产生了巨大影响。其中许多发展是基于多级和域分解技术,这些技术与矩阵的Schur补和低秩更新密切相关。在这篇演讲中,我们将解释这些工具如何转移到其他重要的线性代数问题,包括矩阵函数和矩阵方程。快速算法是通过将分治策略与矩阵函数的低秩更新相结合而得到的。这些算法的收敛性分析建立在著名的CrouzeixParencia结果的多变量扩展之上。新开发的算法能够处理各种矩阵函数和矩阵结构,包括稀疏矩阵以及具有分层低秩和类Toeplitz结构的矩阵。它们的多功能性将通过几个应用和扩展来证明。本次演讲基于与伯恩哈德·贝克尔曼、爱丽丝·科尔蒂诺维斯、莱昂纳多·罗波尔、斯特凡诺·马西和马塞尔·施韦策的合作。 |
课程简介: | The development of efficient numerical algorithms for solving large-scale linear systems is one of the success stories of numerical linear algebra that has had a tremendous impact on our ability to perform complex numerical simulations and large-scale statistical computations. Many of these developments are based on multilevel and domain decomposition techniques, which are closely linked to Schur complements and low-rank updates of matrices. In this talk, we explain how these tools carry over to other important linear algebra problems, including matrix functions and matrix equations. Fast algorithms are derived from combining divide-and-conquer strategies with low-rank updates of matrix functions. The convergence analysis of these algorithms is built on a multivariate extension of the celebrated CrouzeixPalencia result. The newly developed algorithms are capable of addressing a wide variety of matrix functions and matrix structures, including sparse matrices as well as matrices with hierarchical low rank and Toeplitz-like structures. Their versatility will be demonstrated with several applications and extensions. This talk is based on joint work with Bernhard Beckermann, Alice Cortinovis, Leonardo Robol, Stefano Massei, and Marcel Schweitzer. |
关 键 词: | 快速算法; 高效数值算法; 稀疏矩阵 |
课程来源: | 视频讲座网 |
数据采集: | 2024-05-28:liyq |
最后编审: | 2024-05-28:liyq |
阅读次数: | 16 |