Erdos-Faber-Lovasz猜想的一个证明A proof of the Erdos-Faber-Lovasz conjecture |
|
课程网址: | https://videolectures.net/8ecm2021_kuhn_proof_faber/ |
主讲教师: | 信息不详。欢迎您在右侧留言补充。 |
开课单位: | 8ECM会议 |
开课时间: | 2021-07-06 |
课程语种: | 英语 |
中文简介: | 图和超图着色问题是组合数学的核心,它的应用和连接到许多其他领域,如几何、算法设计和信息理论。然而,对于超图来说,即使是基本问题也变得相当具有挑战性:特别是著名的Erdõos-Faber-Lov´asz猜想(1972年提出)指出,任何线性超图在n个顶点上的色指数最多为n。埃尔德认为这是他最喜欢的三个组合问题之一,并出价500美元来解决这个问题。在与Dong-yeap Kang、Tom Kelly、Abhishek Methuku和Deryk Osthus的联合工作中,我们对每个大n证明了这一猜想。我们还提供了这一结果的“稳定性版本”,证实了Kahn的预测。在我的演讲中,我将讨论一些背景、证明背后的一些想法以及一些相关的悬而未决的问题。 |
课程简介: | Graph and hypergraph colouring problems are central to combinatorics, with applications and connections to many other areas, such as geometry, algorithm design, and information theory. However, for hypergraphs even basic problems have turned out to be rather challenging: in particular, the famous Erd˝os-Faber-Lov´asz conjecture (posed in 1972) states that the chromatic index of any linear hypergraph on n vertices is at most n. (Here the chromatic index of a hypergraph H is the smallest number of colours needed to colour the edges of H so that any two edges that share a vertex have different colours.) There are also several other equivalent (dual) versions of this conjecture, e.g. in terms of colouring the vertices of nearly disjoint cliques. Erd˝os considered this to be one of his three most favorite combinatorial problems and offered $500 for the solution of the problem. In joint work with Dong-yeap Kang, Tom Kelly, Abhishek Methuku and Deryk Osthus, we prove this conjecture for every large n. We also provide ‘stability versions’ of this result, which confirm a prediction of Kahn. In my talk, I will discuss some background, some of the ideas behind the proof as well as some related open problems. |
关 键 词: | 超图着色问题; 组合数学; 算法设计 |
课程来源: | 视频讲座网 |
数据采集: | 2024-05-28:liyq |
最后编审: | 2024-05-28:liyq |
阅读次数: | 21 |