泊松几何缩略图的邀请An invitation to Poisson Geometry |
|
课程网址: | https://videolectures.net/8ecm2021_crainic_poisson_geometry/ |
主讲教师: | Marius Crainic |
开课单位: | 8ECM会议 |
开课时间: | 2021-07-06 |
课程语种: | 英语 |
中文简介: | 泊松结构起源于拉格朗日和泊松对太阳系中行星运动的研究;理解它们的过程是漫长的,它促使人们发现了数学中的几个基本概念,如:雅可比恒等式、Maurer-Cartan方程等。泊松几何(泊松结构的几何研究)可以追溯到李和基里洛夫的工作;第一个系统的研究是在20世纪70年代的Lichnerowicz和80年代的Weinstein的工作中发现的。它在过去几十年中的显著发展是由几个问题(如可积性或Conn线性化定理)驱动的,并导致了与各种其他领域惊人的新联系。所有这些导致了今天对泊松几何的理解:它是李理论、辛几何和对开理论的混合体,为这些理论以及其他理论之间令人兴奋的相互作用提供了框架。在演讲中,我将尝试扩展这个摘要。 |
课程简介: | Poisson structures originate in the work of Lagrange and Poisson on the motion of planets in the solar system; the process of understanding them was long and it prompted the discovery of several fundamental concepts in mathematics, such as: Jacobi identity, Maurer-Cartan equations, etc. Poisson Geometry (the geometric study of Poisson structures) can be traced back to the work of Lie and Kirilov; the first systematic studies are found in the work of Lichnerowicz in the 1970s and Weinstein in the 1980s. Its remarkable development over the last few decades was driven by several problems (such as integrability or Conn’s linearization theorem) and led to surprising new connections with various other fields. All these led to the present-day understanding of Poisson Geometry: it is an amalgam of Lie Theory, Symplectic Geometry and Foliation Theory, offering the framework for exciting interactions between these theories, as well as others. In the talk I will try to expand this abstract. |
关 键 词: | 缩略图; 雅可比恒等式; 泊松几何 |
课程来源: | 视频讲座网 |
数据采集: | 2024-05-28:liyq |
最后编审: | 2024-05-28:liyq |
阅读次数: | 19 |