从Kahler-Einstein度量到zeta函数的零点From Kahler-Einstein metrics to zeros of zeta functions |
|
课程网址: | https://videolectures.net/8ecm2021_berman_from_metrics/ |
主讲教师: | Robert Berman |
开课单位: | 8ECM会议 |
开课时间: | 2021-07-06 |
课程语种: | 英语 |
中文简介: | 虽然经典极化流形X上唯一的K¨ahler-Enstein度量的存在已经在70年代建立,但几乎没有可用的显式公式(即使是在复杂曲线的情况下!)。在这篇演讲中,我将对K–ahler-Enstein度量的概率构造进行非技术性的介绍,特别是,它产生了X上K–ahler–Einstein度量上的正则近似。所讨论的近似度量表示为显式周期积分,并且对Fano变化情况的推测扩展导致了一些阿基米德ζ函数与零的一些有趣的联系。 |
课程简介: | While the existence of a unique K¨ahler-Einstein metrics on a canonically polarized manifold X was established already in the seventies there are very few explicit formulas available (even in the case of complex curves!). In this talk I will give a non-technical introduction to a probabilistic construction of K¨ahler-Einstein metrics, which, in particular, yields canonical approximations of the K¨ahler-Einstein metric on X. The approximating metrics in question are expressed as explicit period integrals and the conjectural extension to the case of a Fano variety leads to some intriguing connections to zeros of some Archimedean zeta functions. |
关 键 词: | Kahler度量; zeta函数; 阿基米德函数 |
课程来源: | 视频讲座网 |
数据采集: | 2024-05-29:liyq |
最后编审: | 2024-05-31:liyq |
阅读次数: | 10 |