简单可调和C*-代数的结构与分类Structure and classification of simple amenable C* algebras |
|
课程网址: | https://videolectures.net/8ecm2021_white_structure_simple/ |
主讲教师: | Stuart White |
开课单位: | 8ECM会议 |
开课时间: | 2021-07-06 |
课程语种: | 英语 |
中文简介: | 在这篇演讲中,我将概述简单可服从C*-代数的结构理论和分类结果的最新进展。C*-代数是希尔伯特空间上有界算子的模闭自伴随子代数,其例子自然地产生于群的酉表示和拓扑动力学。通过局部紧豪斯多夫空间上连续函数的交换代数,它们具有拓扑性质。C*-代数的分类有其精神起源于70年代Connes的von Neumann代数的强大结构和分类定理。然而,在C*-代数的拓扑环境中,高维现象通常会阻碍分类。在过去的十年里,抽象结构条件的识别已经取得了进展,这些条件给出了可以用K-理论和迹分类的代数的最大族。这些条件现在具有性质非常不同的等效公式,可用于将自然发生的例子纳入分类范围。该演讲部分基于与Castillejos、Carri´on、Evington、Gabe、Schafhauser、Tikuisis和Winter的联合作品。 |
课程简介: | In this talk I will give an overview of recent progress in the structure theory of simple amenable C ∗ -algebras and classification results. C ∗ -algebras are norm closed self-adjoint subalgebras of the bounded operators on a Hilbert space, with examples arising naturally from unitary representations of groups, and topological dynamics. They have a topological flavour, seen through the commutative algebras of continuous functions on locally compact Hausdorff spaces. The classification of C ∗ -algebras has its spiritual origins in the powerful structure and classification theorems for von Neumann algebras of Connes in the ’70s. However, in the topological setting of C ∗ -algebras, higher dimensional phenomena can obstruct classification in general. Progress over the last decade has seen the identification of abstract structural conditions which give the maximal family of algebras which can be classified by K-theory and traces. These conditions now have equivalent formulations of very different natures, which can be used to bring naturally occurring examples within the scope of classification. The talk is based in part on joint works with Castillejos, Carri´on, Evington, Gabe, Schafhauser, Tikuisis, and Winter. |
关 键 词: | C*-代数; 结构分类; 希尔伯特空间 |
课程来源: | 视频讲座网 |
数据采集: | 2024-05-29:liyq |
最后编审: | 2024-05-29:liyq |
阅读次数: | 13 |