识别的相互作用在时间和频率的局部和全局的网络域Identifying interactions in the time and frequency domains in local and global networks |
|
课程网址: | http://videolectures.net/licsb2010_zou_iit/ |
主讲教师: | Cunlu Zou |
开课单位: | 沃里克大学 |
开课时间: | 2010-05-03 |
课程语种: | 英语 |
中文简介: | 贝叶斯网络推理,常微分方程(ODEs)和信息理论等逆向工程方法被广泛应用于基于多维度推导基因,蛋白质,代谢物,神经元,脑区等不同元素之间的因果关系。空间和时间数据。在这里,我们关注地方和全球网络中时域和频域的格兰杰因果关系方法,并将我们的方法应用于实验数据(基因和蛋白质)。对于一个小型基因网络,格兰杰因果关系的表现优于上述所有其他三种方法。使用一种新方法重建了来自812种蛋白质的全球蛋白质网络。获得的结果与已知的实验结果很好地拟合,并且开辟了许多实验可测试的预测。除了时域中的交互之外,还恢复了频域中的交互。我们的方法是通用的,可以很容易地应用于其他类型的时态数据。 |
课程简介: | Reverse-engineering approaches such as Bayesian network inference, ordinary differential equations (ODEs) and information theory are widely applied to deriving causal relationships among different elements such as genes, proteins, metabolites, neurons, brain areas and so on, based upon multi-dimensional spatial and temporal data. Here we focused on the Granger causality approach in both the time and frequency domains in local and global networks, and applied our approach to experimental data (genes and proteins). For a small gene network, Granger causality outperformed all the other three approaches mentioned above. A global protein network from 812 proteins was reconstructed, using a novel approach. The obtained results fitted well with known experimental findings and opened up many experimentally testable predictions. In addition to interactions in the time domain, interactions in the frequency domain were also recovered. Our approach is general and can be easily applied to other types of temporal data. |
关 键 词: | 逆向工程的方法; 基因网络; 实验数据; 时空数据 |
课程来源: | 视频讲座网 |
最后编审: | 2020-10-14:yumf |
阅读次数: | 52 |